voice_clone_v2 / transformers /scripts /check_tokenizers.py
ahassoun's picture
Upload 3018 files
ee6e328
from collections import Counter
import datasets
import transformers
from transformers.convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS
from transformers.utils import logging
logging.set_verbosity_info()
TOKENIZER_CLASSES = {
name: (getattr(transformers, name), getattr(transformers, name + "Fast")) for name in SLOW_TO_FAST_CONVERTERS
}
dataset = datasets.load_dataset("xnli", split="test+validation")
total = 0
perfect = 0
imperfect = 0
wrong = 0
def check_diff(spm_diff, tok_diff, slow, fast):
if spm_diff == list(reversed(tok_diff)):
# AAA -> AA+A vs A+AA case.
return True
elif len(spm_diff) == len(tok_diff) and fast.decode(spm_diff) == fast.decode(tok_diff):
# Second order OK
# Barrich -> Barr + ich vs Bar + rich
return True
spm_reencoded = slow.encode(slow.decode(spm_diff))
tok_reencoded = fast.encode(fast.decode(spm_diff))
if spm_reencoded != spm_diff and spm_reencoded == tok_reencoded:
# Type 3 error.
# Snehagatha ->
# Sne, h, aga, th, a
# Sne, ha, gat, ha
# Encoding the wrong with sp does not even recover what spm gave us
# It fits tokenizer however...
return True
return False
def check_LTR_mark(line, idx, fast):
enc = fast.encode_plus(line)[0]
offsets = enc.offsets
curr, prev = offsets[idx], offsets[idx - 1]
if curr is not None and line[curr[0] : curr[1]] == "\u200f":
return True
if prev is not None and line[prev[0] : prev[1]] == "\u200f":
return True
def check_details(line, spm_ids, tok_ids, slow, fast):
# Encoding can be the same with same result AAA -> A + AA vs AA + A
# We can check that we use at least exactly the same number of tokens.
for i, (spm_id, tok_id) in enumerate(zip(spm_ids, tok_ids)):
if spm_id != tok_id:
break
first = i
for i, (spm_id, tok_id) in enumerate(zip(reversed(spm_ids), reversed(tok_ids))):
if spm_id != tok_id:
break
last = len(spm_ids) - i
spm_diff = spm_ids[first:last]
tok_diff = tok_ids[first:last]
if check_diff(spm_diff, tok_diff, slow, fast):
return True
if check_LTR_mark(line, first, fast):
return True
if last - first > 5:
# We might have twice a single problem, attempt to subdivide the disjointed tokens into smaller problems
spms = Counter(spm_ids[first:last])
toks = Counter(tok_ids[first:last])
removable_tokens = {spm_ for (spm_, si) in spms.items() if toks.get(spm_, 0) == si}
min_width = 3
for i in range(last - first - min_width):
if all(spm_ids[first + i + j] in removable_tokens for j in range(min_width)):
possible_matches = [
k
for k in range(last - first - min_width)
if tok_ids[first + k : first + k + min_width] == spm_ids[first + i : first + i + min_width]
]
for j in possible_matches:
if check_diff(spm_ids[first : first + i], tok_ids[first : first + j], sp, tok) and check_details(
line,
spm_ids[first + i : last],
tok_ids[first + j : last],
slow,
fast,
):
return True
print(f"Spm: {[fast.decode([spm_ids[i]]) for i in range(first, last)]}")
try:
print(f"Tok: {[fast.decode([tok_ids[i]]) for i in range(first, last)]}")
except Exception:
pass
ok_start = fast.decode(spm_ids[:first])
ok_end = fast.decode(spm_ids[last:])
wrong = fast.decode(spm_ids[first:last])
print()
print(wrong)
return False
def test_string(slow, fast, text):
global perfect
global imperfect
global wrong
global total
slow_ids = slow.encode(text)
fast_ids = fast.encode(text)
skip_assert = False
total += 1
if slow_ids != fast_ids:
if check_details(text, slow_ids, fast_ids, slow, fast):
skip_assert = True
imperfect += 1
else:
wrong += 1
else:
perfect += 1
if total % 10000 == 0:
print(f"({perfect} / {imperfect} / {wrong} ----- {perfect + imperfect + wrong})")
if skip_assert:
return
assert (
slow_ids == fast_ids
), f"line {text} : \n\n{slow_ids}\n{fast_ids}\n\n{slow.tokenize(text)}\n{fast.tokenize(text)}"
def test_tokenizer(slow, fast):
global batch_total
for i in range(len(dataset)):
# premise, all languages
for text in dataset[i]["premise"].values():
test_string(slow, fast, text)
# hypothesis, all languages
for text in dataset[i]["hypothesis"]["translation"]:
test_string(slow, fast, text)
if __name__ == "__main__":
for name, (slow_class, fast_class) in TOKENIZER_CLASSES.items():
checkpoint_names = list(slow_class.max_model_input_sizes.keys())
for checkpoint in checkpoint_names:
imperfect = 0
perfect = 0
wrong = 0
total = 0
print(f"========================== Checking {name}: {checkpoint} ==========================")
slow = slow_class.from_pretrained(checkpoint, force_download=True)
fast = fast_class.from_pretrained(checkpoint, force_download=True)
test_tokenizer(slow, fast)
print(f"Accuracy {perfect * 100 / total:.2f}")