Spaces:
Paused
Paused
import subprocess | |
# Define the local paths to the packages | |
local_package_paths = ["./TTS", "./transformers"] | |
# Run the pip install command for each local package | |
for package_path in local_package_paths: | |
subprocess.run(["pip", "install", "-e", package_path]) | |
import gradio as gr | |
from share_btn import community_icon_html, loading_icon_html, share_js | |
import os | |
import shutil | |
import re | |
#from huggingface_hub import snapshot_download | |
import numpy as np | |
from scipy.io import wavfile | |
from scipy.io.wavfile import write, read | |
from pydub import AudioSegment | |
file_upload_available = os.environ.get("ALLOW_FILE_UPLOAD") | |
MAX_NUMBER_SENTENCES = 10 | |
import json | |
with open("characters.json", "r") as file: | |
data = json.load(file) | |
characters = [ | |
{ | |
"image": item["image"], | |
"title": item["title"], | |
"speaker": item["speaker"] | |
} | |
for item in data | |
] | |
from TTS.api import TTS | |
tts = TTS("tts_models/multilingual/multi-dataset/bark", gpu=True) | |
def cut_wav(input_path, max_duration): | |
# Load the WAV file | |
audio = AudioSegment.from_wav(input_path) | |
# Calculate the duration of the audio | |
audio_duration = len(audio) / 1000 # Convert milliseconds to seconds | |
# Determine the duration to cut (maximum of max_duration and actual audio duration) | |
cut_duration = min(max_duration, audio_duration) | |
# Cut the audio | |
cut_audio = audio[:int(cut_duration * 1000)] # Convert seconds to milliseconds | |
# Get the input file name without extension | |
file_name = os.path.splitext(os.path.basename(input_path))[0] | |
# Construct the output file path with the original file name and "_cut" suffix | |
output_path = f"{file_name}_cut.wav" | |
# Save the cut audio as a new WAV file | |
cut_audio.export(output_path, format="wav") | |
return output_path | |
def load_hidden(audio_in): | |
return audio_in | |
def load_hidden_mic(audio_in): | |
print("USER RECORDED A NEW SAMPLE") | |
library_path = 'bark_voices' | |
folder_name = 'audio-0-100' | |
second_folder_name = 'audio-0-100_cleaned' | |
folder_path = os.path.join(library_path, folder_name) | |
second_folder_path = os.path.join(library_path, second_folder_name) | |
print("We need to clean previous util files, if needed:") | |
if os.path.exists(folder_path): | |
try: | |
shutil.rmtree(folder_path) | |
print(f"Successfully deleted the folder previously created from last raw recorded sample: {folder_path}") | |
except OSError as e: | |
print(f"Error: {folder_path} - {e.strerror}") | |
else: | |
print(f"OK, the folder for a raw recorded sample does not exist: {folder_path}") | |
if os.path.exists(second_folder_path): | |
try: | |
shutil.rmtree(second_folder_path) | |
print(f"Successfully deleted the folder previously created from last cleaned recorded sample: {second_folder_path}") | |
except OSError as e: | |
print(f"Error: {second_folder_path} - {e.strerror}") | |
else: | |
print(f"Ok, the folder for a cleaned recorded sample does not exist: {second_folder_path}") | |
return audio_in | |
def clear_clean_ckeck(): | |
return False | |
def wipe_npz_file(folder_path): | |
print("YO β’ a user is manipulating audio inputs") | |
def split_process(audio, chosen_out_track): | |
gr.Info("Cleaning your audio sample...") | |
os.makedirs("out", exist_ok=True) | |
write('test.wav', audio[0], audio[1]) | |
os.system("python3 -m demucs.separate -n mdx_extra_q -j 4 test.wav -o out") | |
#return "./out/mdx_extra_q/test/vocals.wav","./out/mdx_extra_q/test/bass.wav","./out/mdx_extra_q/test/drums.wav","./out/mdx_extra_q/test/other.wav" | |
if chosen_out_track == "vocals": | |
print("Audio sample cleaned") | |
return "./out/mdx_extra_q/test/vocals.wav" | |
elif chosen_out_track == "bass": | |
return "./out/mdx_extra_q/test/bass.wav" | |
elif chosen_out_track == "drums": | |
return "./out/mdx_extra_q/test/drums.wav" | |
elif chosen_out_track == "other": | |
return "./out/mdx_extra_q/test/other.wav" | |
elif chosen_out_track == "all-in": | |
return "test.wav" | |
def update_selection(selected_state: gr.SelectData): | |
c_image = characters[selected_state.index]["image"] | |
c_title = characters[selected_state.index]["title"] | |
c_speaker = characters[selected_state.index]["speaker"] | |
return c_title, selected_state | |
def infer(prompt, input_wav_file, clean_audio, hidden_numpy_audio): | |
print(""" | |
βββββ | |
NEW INFERENCE: | |
βββββββ | |
""") | |
if prompt == "": | |
gr.Warning("Do not forget to provide a tts prompt !") | |
if clean_audio is True : | |
print("We want to clean audio sample") | |
# Extract the file name without the extension | |
new_name = os.path.splitext(os.path.basename(input_wav_file))[0] | |
print(f"FILE BASENAME is: {new_name}") | |
if os.path.exists(os.path.join("bark_voices", f"{new_name}_cleaned")): | |
print("This file has already been cleaned") | |
check_name = os.path.join("bark_voices", f"{new_name}_cleaned") | |
source_path = os.path.join(check_name, f"{new_name}_cleaned.wav") | |
else: | |
print("This file is new, we need to clean and store it") | |
source_path = split_process(hidden_numpy_audio, "vocals") | |
# Rename the file | |
new_path = os.path.join(os.path.dirname(source_path), f"{new_name}_cleaned.wav") | |
os.rename(source_path, new_path) | |
source_path = new_path | |
else : | |
print("We do NOT want to clean audio sample") | |
# Path to your WAV file | |
source_path = input_wav_file | |
# Destination directory | |
destination_directory = "bark_voices" | |
# Extract the file name without the extension | |
file_name = os.path.splitext(os.path.basename(source_path))[0] | |
# Construct the full destination directory path | |
destination_path = os.path.join(destination_directory, file_name) | |
# Create the new directory | |
os.makedirs(destination_path, exist_ok=True) | |
# Move the WAV file to the new directory | |
shutil.move(source_path, os.path.join(destination_path, f"{file_name}.wav")) | |
# βββββ | |
# Split the text into sentences based on common punctuation marks | |
sentences = re.split(r'(?<=[.!?])\s+', prompt) | |
if len(sentences) > MAX_NUMBER_SENTENCES: | |
gr.Info("Your text is too long. To keep this demo enjoyable for everyone, we only kept the first 10 sentences :) Duplicate this space and set MAX_NUMBER_SENTENCES for longer texts ;)") | |
# Keep only the first MAX_NUMBER_SENTENCES sentences | |
first_nb_sentences = sentences[:MAX_NUMBER_SENTENCES] | |
# Join the selected sentences back into a single string | |
limited_prompt = ' '.join(first_nb_sentences) | |
prompt = limited_prompt | |
else: | |
prompt = prompt | |
gr.Info("Generating audio from prompt") | |
tts.tts_to_file(text=prompt, | |
file_path="output.wav", | |
voice_dir="bark_voices/", | |
speaker=f"{file_name}") | |
# List all the files and subdirectories in the given directory | |
contents = os.listdir(f"bark_voices/{file_name}") | |
# Print the contents | |
for item in contents: | |
print(item) | |
print("Preparing final waveform video ...") | |
tts_video = gr.make_waveform(audio="output.wav") | |
print(tts_video) | |
print("FINISHED") | |
return "output.wav", tts_video, gr.update(value=f"bark_voices/{file_name}/{contents[1]}", visible=True), gr.Group.update(visible=True), destination_path | |
def infer_from_c(prompt, c_name): | |
print(""" | |
βββββ | |
NEW INFERENCE: | |
βββββββ | |
""") | |
if prompt == "": | |
gr.Warning("Do not forget to provide a tts prompt !") | |
print("Warning about prompt sent to user") | |
print(f"USING VOICE LIBRARY: {c_name}") | |
# Split the text into sentences based on common punctuation marks | |
sentences = re.split(r'(?<=[.!?])\s+', prompt) | |
if len(sentences) > MAX_NUMBER_SENTENCES: | |
gr.Info("Your text is too long. To keep this demo enjoyable for everyone, we only kept the first 10 sentences :) Duplicate this space and set MAX_NUMBER_SENTENCES for longer texts ;)") | |
# Keep only the first MAX_NUMBER_SENTENCES sentences | |
first_nb_sentences = sentences[:MAX_NUMBER_SENTENCES] | |
# Join the selected sentences back into a single string | |
limited_prompt = ' '.join(first_nb_sentences) | |
prompt = limited_prompt | |
else: | |
prompt = prompt | |
if c_name == "": | |
gr.Warning("Voice character is not properly selected. Please ensure that the name of the chosen voice is specified in the Character Name input.") | |
print("Warning about Voice Name sent to user") | |
else: | |
print(f"Generating audio from prompt with {c_name} ;)") | |
tts.tts_to_file(text=prompt, | |
file_path="output.wav", | |
voice_dir="examples/library/", | |
speaker=f"{c_name}") | |
print("Preparing final waveform video ...") | |
tts_video = gr.make_waveform(audio="output.wav") | |
print(tts_video) | |
print("FINISHED") | |
return "output.wav", tts_video, gr.update(value=f"examples/library/{c_name}/{c_name}.npz", visible=True), gr.Group.update(visible=True) | |
css = """ | |
#col-container {max-width: 780px; margin-left: auto; margin-right: auto;} | |
a {text-decoration-line: underline; font-weight: 600;} | |
.mic-wrap > button { | |
width: 100%; | |
height: 60px; | |
font-size: 1.4em!important; | |
} | |
.record-icon.svelte-1thnwz { | |
display: flex; | |
position: relative; | |
margin-right: var(--size-2); | |
width: unset; | |
height: unset; | |
} | |
span.record-icon > span.dot.svelte-1thnwz { | |
width: 20px!important; | |
height: 20px!important; | |
} | |
.animate-spin { | |
animation: spin 1s linear infinite; | |
} | |
@keyframes spin { | |
from { | |
transform: rotate(0deg); | |
} | |
to { | |
transform: rotate(360deg); | |
} | |
} | |
#share-btn-container { | |
display: flex; | |
padding-left: 0.5rem !important; | |
padding-right: 0.5rem !important; | |
background-color: #000000; | |
justify-content: center; | |
align-items: center; | |
border-radius: 9999px !important; | |
max-width: 15rem; | |
height: 36px; | |
} | |
div#share-btn-container > div { | |
flex-direction: row; | |
background: black; | |
align-items: center; | |
} | |
#share-btn-container:hover { | |
background-color: #060606; | |
} | |
#share-btn { | |
all: initial; | |
color: #ffffff; | |
font-weight: 600; | |
cursor:pointer; | |
font-family: 'IBM Plex Sans', sans-serif; | |
margin-left: 0.5rem !important; | |
padding-top: 0.5rem !important; | |
padding-bottom: 0.5rem !important; | |
right:0; | |
} | |
#share-btn * { | |
all: unset; | |
} | |
#share-btn-container div:nth-child(-n+2){ | |
width: auto !important; | |
min-height: 0px !important; | |
} | |
#share-btn-container .wrap { | |
display: none !important; | |
} | |
#share-btn-container.hidden { | |
display: none!important; | |
} | |
img[src*='#center'] { | |
display: block; | |
margin: auto; | |
} | |
.footer { | |
margin-bottom: 45px; | |
margin-top: 10px; | |
text-align: center; | |
border-bottom: 1px solid #e5e5e5; | |
} | |
.footer>p { | |
font-size: .8rem; | |
display: inline-block; | |
padding: 0 10px; | |
transform: translateY(10px); | |
background: white; | |
} | |
.dark .footer { | |
border-color: #303030; | |
} | |
.dark .footer>p { | |
background: #0b0f19; | |
} | |
.disclaimer { | |
text-align: left; | |
} | |
.disclaimer > p { | |
font-size: .8rem; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown(""" | |
<h1 style="text-align: center;">Voice Cloning Demo</h1> | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox( | |
label = "Text to speech prompt", | |
info = "One or two sentences at a time is better* (max: 10)", | |
placeholder = "Hello friend! How are you today?", | |
elem_id = "tts-prompt" | |
) | |
with gr.Column(): | |
audio_in = gr.Audio( | |
label="WAV voice to clone", | |
type="filepath", | |
source="upload", | |
interactive = False | |
) | |
hidden_audio_numpy = gr.Audio(type="numpy", visible=False) | |
submit_btn = gr.Button("Submit") | |
with gr.Tab("Microphone"): | |
texts_samples = gr.Textbox(label = "Helpers", | |
info = "You can read out loud one of these sentences if you do not know what to record :)", | |
value = """"Jazz, a quirky mix of groovy saxophones and wailing trumpets, echoes through the vibrant city streets." | |
βββ | |
"A majestic orchestra plays enchanting melodies, filling the air with harmony." | |
βββ | |
"The exquisite aroma of freshly baked bread wafts from a cozy bakery, enticing passersby." | |
βββ | |
"A thunderous roar shakes the ground as a massive jet takes off into the sky, leaving trails of white behind." | |
βββ | |
"Laughter erupts from a park where children play, their innocent voices rising like tinkling bells." | |
βββ | |
"Waves crash on the beach, and seagulls caw as they soar overhead, a symphony of nature's sounds." | |
βββ | |
"In the distance, a blacksmith hammers red-hot metal, the rhythmic clang punctuating the day." | |
βββ | |
"As evening falls, a soft hush blankets the world, crickets chirping in a soothing rhythm." | |
""", | |
interactive = False, | |
lines = 5 | |
) | |
micro_in = gr.Audio( | |
label="Record voice to clone", | |
type="filepath", | |
source="microphone", | |
interactive = True | |
) | |
clean_micro = gr.Checkbox(label="Clean sample ?", value=False) | |
micro_submit_btn = gr.Button("Submit") | |
audio_in.upload(fn=load_hidden, inputs=[audio_in], outputs=[hidden_audio_numpy], queue=False) | |
micro_in.stop_recording(fn=load_hidden_mic, inputs=[micro_in], outputs=[hidden_audio_numpy], queue=False) | |
with gr.Column(): | |
cloned_out = gr.Audio( | |
label="Text to speech output", | |
visible = False | |
) | |
video_out = gr.Video( | |
label = "Waveform video", | |
elem_id = "voice-video-out" | |
) | |
npz_file = gr.File( | |
label = ".npz file", | |
visible = False | |
) | |
folder_path = gr.Textbox(visible=False) | |
audio_in.change(fn=wipe_npz_file, inputs=[folder_path], queue=False) | |
micro_in.clear(fn=wipe_npz_file, inputs=[folder_path], queue=False) | |
submit_btn.click( | |
fn = infer, | |
inputs = [ | |
prompt, | |
audio_in, | |
hidden_audio_numpy | |
], | |
outputs = [ | |
cloned_out, | |
video_out, | |
npz_file, | |
folder_path | |
] | |
) | |
micro_submit_btn.click( | |
fn = infer, | |
inputs = [ | |
prompt, | |
micro_in, | |
clean_micro, | |
hidden_audio_numpy | |
], | |
outputs = [ | |
cloned_out, | |
video_out, | |
npz_file, | |
folder_path | |
] | |
) | |
demo.queue(api_open=False, max_size=10).launch() | |