Spaces:
Paused
Paused
# coding=utf-8 | |
# Copyright 2020 The Hugging Face Team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from dataclasses import dataclass | |
from typing import Optional | |
from transformers.testing_utils import require_torch | |
from transformers.utils import ModelOutput | |
class ModelOutputTest(ModelOutput): | |
a: float | |
b: Optional[float] = None | |
c: Optional[float] = None | |
class ModelOutputTester(unittest.TestCase): | |
def test_get_attributes(self): | |
x = ModelOutputTest(a=30) | |
self.assertEqual(x.a, 30) | |
self.assertIsNone(x.b) | |
self.assertIsNone(x.c) | |
with self.assertRaises(AttributeError): | |
_ = x.d | |
def test_index_with_ints_and_slices(self): | |
x = ModelOutputTest(a=30, b=10) | |
self.assertEqual(x[0], 30) | |
self.assertEqual(x[1], 10) | |
self.assertEqual(x[:2], (30, 10)) | |
self.assertEqual(x[:], (30, 10)) | |
x = ModelOutputTest(a=30, c=10) | |
self.assertEqual(x[0], 30) | |
self.assertEqual(x[1], 10) | |
self.assertEqual(x[:2], (30, 10)) | |
self.assertEqual(x[:], (30, 10)) | |
def test_index_with_strings(self): | |
x = ModelOutputTest(a=30, b=10) | |
self.assertEqual(x["a"], 30) | |
self.assertEqual(x["b"], 10) | |
with self.assertRaises(KeyError): | |
_ = x["c"] | |
x = ModelOutputTest(a=30, c=10) | |
self.assertEqual(x["a"], 30) | |
self.assertEqual(x["c"], 10) | |
with self.assertRaises(KeyError): | |
_ = x["b"] | |
def test_dict_like_properties(self): | |
x = ModelOutputTest(a=30) | |
self.assertEqual(list(x.keys()), ["a"]) | |
self.assertEqual(list(x.values()), [30]) | |
self.assertEqual(list(x.items()), [("a", 30)]) | |
self.assertEqual(list(x), ["a"]) | |
x = ModelOutputTest(a=30, b=10) | |
self.assertEqual(list(x.keys()), ["a", "b"]) | |
self.assertEqual(list(x.values()), [30, 10]) | |
self.assertEqual(list(x.items()), [("a", 30), ("b", 10)]) | |
self.assertEqual(list(x), ["a", "b"]) | |
x = ModelOutputTest(a=30, c=10) | |
self.assertEqual(list(x.keys()), ["a", "c"]) | |
self.assertEqual(list(x.values()), [30, 10]) | |
self.assertEqual(list(x.items()), [("a", 30), ("c", 10)]) | |
self.assertEqual(list(x), ["a", "c"]) | |
with self.assertRaises(Exception): | |
x = x.update({"d": 20}) | |
with self.assertRaises(Exception): | |
del x["a"] | |
with self.assertRaises(Exception): | |
_ = x.pop("a") | |
with self.assertRaises(Exception): | |
_ = x.setdefault("d", 32) | |
def test_set_attributes(self): | |
x = ModelOutputTest(a=30) | |
x.a = 10 | |
self.assertEqual(x.a, 10) | |
self.assertEqual(x["a"], 10) | |
def test_set_keys(self): | |
x = ModelOutputTest(a=30) | |
x["a"] = 10 | |
self.assertEqual(x.a, 10) | |
self.assertEqual(x["a"], 10) | |
def test_instantiate_from_dict(self): | |
x = ModelOutputTest({"a": 30, "b": 10}) | |
self.assertEqual(list(x.keys()), ["a", "b"]) | |
self.assertEqual(x.a, 30) | |
self.assertEqual(x.b, 10) | |
def test_instantiate_from_iterator(self): | |
x = ModelOutputTest([("a", 30), ("b", 10)]) | |
self.assertEqual(list(x.keys()), ["a", "b"]) | |
self.assertEqual(x.a, 30) | |
self.assertEqual(x.b, 10) | |
with self.assertRaises(ValueError): | |
_ = ModelOutputTest([("a", 30), (10, 10)]) | |
x = ModelOutputTest(a=(30, 30)) | |
self.assertEqual(list(x.keys()), ["a"]) | |
self.assertEqual(x.a, (30, 30)) | |
def test_torch_pytree(self): | |
# ensure torch.utils._pytree treats ModelOutput subclasses as nodes (and not leaves) | |
# this is important for DistributedDataParallel gradient synchronization with static_graph=True | |
import torch | |
import torch.utils._pytree | |
x = ModelOutputTest(a=1.0, c=2.0) | |
self.assertFalse(torch.utils._pytree._is_leaf(x)) | |
expected_flat_outs = [1.0, 2.0] | |
expected_tree_spec = torch.utils._pytree.TreeSpec( | |
ModelOutputTest, ["a", "c"], [torch.utils._pytree.LeafSpec(), torch.utils._pytree.LeafSpec()] | |
) | |
actual_flat_outs, actual_tree_spec = torch.utils._pytree.tree_flatten(x) | |
self.assertEqual(expected_flat_outs, actual_flat_outs) | |
self.assertEqual(expected_tree_spec, actual_tree_spec) | |
unflattened_x = torch.utils._pytree.tree_unflatten(actual_flat_outs, actual_tree_spec) | |
self.assertEqual(x, unflattened_x) | |