Spaces:
Paused
Paused
# coding=utf-8 | |
# Copyright 2023 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from pathlib import Path | |
from typing import List | |
from transformers import is_torch_available, is_vision_available | |
from transformers.testing_utils import get_tests_dir, is_tool_test | |
from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText | |
if is_torch_available(): | |
import torch | |
if is_vision_available(): | |
from PIL import Image | |
authorized_types = ["text", "image", "audio"] | |
def create_inputs(input_types: List[str]): | |
inputs = [] | |
for input_type in input_types: | |
if input_type == "text": | |
inputs.append("Text input") | |
elif input_type == "image": | |
inputs.append( | |
Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((512, 512)) | |
) | |
elif input_type == "audio": | |
inputs.append(torch.ones(3000)) | |
elif isinstance(input_type, list): | |
inputs.append(create_inputs(input_type)) | |
else: | |
raise ValueError(f"Invalid type requested: {input_type}") | |
return inputs | |
def output_types(outputs: List): | |
output_types = [] | |
for output in outputs: | |
if isinstance(output, (str, AgentText)): | |
output_types.append("text") | |
elif isinstance(output, (Image.Image, AgentImage)): | |
output_types.append("image") | |
elif isinstance(output, (torch.Tensor, AgentAudio)): | |
output_types.append("audio") | |
else: | |
raise ValueError(f"Invalid output: {output}") | |
return output_types | |
class ToolTesterMixin: | |
def test_inputs_outputs(self): | |
self.assertTrue(hasattr(self.tool, "inputs")) | |
self.assertTrue(hasattr(self.tool, "outputs")) | |
inputs = self.tool.inputs | |
for _input in inputs: | |
if isinstance(_input, list): | |
for __input in _input: | |
self.assertTrue(__input in authorized_types) | |
else: | |
self.assertTrue(_input in authorized_types) | |
outputs = self.tool.outputs | |
for _output in outputs: | |
self.assertTrue(_output in authorized_types) | |
def test_call(self): | |
inputs = create_inputs(self.tool.inputs) | |
outputs = self.tool(*inputs) | |
# There is a single output | |
if len(self.tool.outputs) == 1: | |
outputs = [outputs] | |
self.assertListEqual(output_types(outputs), self.tool.outputs) | |
def test_common_attributes(self): | |
self.assertTrue(hasattr(self.tool, "description")) | |
self.assertTrue(hasattr(self.tool, "default_checkpoint")) | |
self.assertTrue(self.tool.description.startswith("This is a tool that")) | |
def test_agent_types_outputs(self): | |
inputs = create_inputs(self.tool.inputs) | |
outputs = self.tool(*inputs) | |
if not isinstance(outputs, list): | |
outputs = [outputs] | |
self.assertEqual(len(outputs), len(self.tool.outputs)) | |
for output, output_type in zip(outputs, self.tool.outputs): | |
agent_type = AGENT_TYPE_MAPPING[output_type] | |
self.assertTrue(isinstance(output, agent_type)) | |
def test_agent_types_inputs(self): | |
inputs = create_inputs(self.tool.inputs) | |
_inputs = [] | |
for _input, input_type in zip(inputs, self.tool.inputs): | |
if isinstance(input_type, list): | |
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) | |
else: | |
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) | |
# Should not raise an error | |
outputs = self.tool(*inputs) | |
if not isinstance(outputs, list): | |
outputs = [outputs] | |
self.assertEqual(len(outputs), len(self.tool.outputs)) | |