Spaces:
Paused
Paused
# coding=utf-8 | |
# Copyright 2019 HuggingFace Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import annotations | |
import copy | |
import inspect | |
import json | |
import os | |
import random | |
import tempfile | |
import unittest | |
from importlib import import_module | |
from math import isnan | |
from typing import List, Tuple | |
from datasets import Dataset | |
from transformers import is_tf_available, is_torch_available | |
from transformers.models.auto import get_values | |
from transformers.testing_utils import ( # noqa: F401 | |
CaptureLogger, | |
_tf_gpu_memory_limit, | |
is_pt_tf_cross_test, | |
require_tf, | |
require_tf2onnx, | |
slow, | |
torch_device, | |
) | |
from transformers.utils import CONFIG_NAME, GENERATION_CONFIG_NAME, logging | |
from transformers.utils.generic import ModelOutput | |
logger = logging.get_logger(__name__) | |
if is_tf_available(): | |
import numpy as np | |
import tensorflow as tf | |
from transformers import ( | |
TF_MODEL_FOR_CAUSAL_LM_MAPPING, | |
TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, | |
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, | |
TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING, | |
TF_MODEL_FOR_MASKED_LM_MAPPING, | |
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, | |
TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING, | |
TF_MODEL_FOR_PRETRAINING_MAPPING, | |
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, | |
TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING, | |
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, | |
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, | |
TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING, | |
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, | |
TFAutoModel, | |
TFAutoModelForSequenceClassification, | |
TFSharedEmbeddings, | |
) | |
from transformers.generation import ( | |
TFBeamSampleDecoderOnlyOutput, | |
TFBeamSampleEncoderDecoderOutput, | |
TFBeamSearchDecoderOnlyOutput, | |
TFBeamSearchEncoderDecoderOutput, | |
TFGreedySearchDecoderOnlyOutput, | |
TFGreedySearchEncoderDecoderOutput, | |
TFSampleDecoderOnlyOutput, | |
TFSampleEncoderDecoderOutput, | |
) | |
tf.config.experimental.enable_tensor_float_32_execution(False) | |
if _tf_gpu_memory_limit is not None: | |
gpus = tf.config.list_physical_devices("GPU") | |
for gpu in gpus: | |
# Restrict TensorFlow to only allocate x GB of memory on the GPUs | |
try: | |
tf.config.set_logical_device_configuration( | |
gpu, [tf.config.LogicalDeviceConfiguration(memory_limit=_tf_gpu_memory_limit)] | |
) | |
logical_gpus = tf.config.list_logical_devices("GPU") | |
print("Logical GPUs", logical_gpus) | |
except RuntimeError as e: | |
# Virtual devices must be set before GPUs have been initialized | |
print(e) | |
if is_torch_available(): | |
import torch | |
def _config_zero_init(config): | |
configs_no_init = copy.deepcopy(config) | |
for key in configs_no_init.__dict__.keys(): | |
if "_range" in key or "_std" in key: | |
setattr(configs_no_init, key, 0.0) | |
return configs_no_init | |
class TFModelTesterMixin: | |
model_tester = None | |
all_model_classes = () | |
all_generative_model_classes = () | |
test_mismatched_shapes = True | |
test_resize_embeddings = True | |
test_head_masking = True | |
is_encoder_decoder = False | |
has_attentions = True | |
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False) -> dict: | |
inputs_dict = copy.deepcopy(inputs_dict) | |
if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING): | |
inputs_dict = { | |
k: tf.tile(tf.expand_dims(v, 1), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1)) | |
if isinstance(v, tf.Tensor) and v.ndim > 0 | |
else v | |
for k, v in inputs_dict.items() | |
} | |
if return_labels: | |
if model_class in get_values(TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING): | |
inputs_dict["labels"] = tf.ones(self.model_tester.batch_size, dtype=tf.int32) | |
elif model_class in [ | |
*get_values(TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING), | |
*get_values(TF_MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING), | |
]: | |
inputs_dict["start_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) | |
inputs_dict["end_positions"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) | |
elif model_class in [ | |
*get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING), | |
*get_values(TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING), | |
]: | |
inputs_dict["labels"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) | |
elif model_class in get_values(TF_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING): | |
inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32) | |
elif model_class in [ | |
*get_values(TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING), | |
*get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING), | |
*get_values(TF_MODEL_FOR_MASKED_LM_MAPPING), | |
*get_values(TF_MODEL_FOR_PRETRAINING_MAPPING), | |
*get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING), | |
*get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING), | |
] and "labels" in dict(inspect.signature(model_class.call).parameters): | |
inputs_dict["labels"] = tf.zeros( | |
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32 | |
) | |
elif model_class in get_values(TF_MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING): | |
num_patches = self.model_tester.image_size // self.model_tester.patch_size | |
inputs_dict["bool_masked_pos"] = tf.zeros( | |
(self.model_tester.batch_size, num_patches**2), dtype=tf.int32 | |
) | |
elif model_class in get_values(TF_MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING): | |
batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape | |
inputs_dict["labels"] = tf.zeros((self.model_tester.batch_size, height, width), dtype=tf.int32) | |
elif model_class.__name__.endswith("ForCTC"): | |
# When we have enough CTC models for an AutoClass, we should use their mapping instead of name checks | |
inputs_dict["labels"] = tf.zeros( | |
(self.model_tester.batch_size, self.model_tester.seq_length), dtype=tf.int32 | |
) | |
return inputs_dict | |
def test_initialization(self): | |
pass | |
def test_save_load(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
outputs = model(self._prepare_for_class(inputs_dict, model_class)) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname, saved_model=False) | |
# the config file (and the generation config file, if it can generate) should be saved | |
self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME))) | |
self.assertEqual( | |
model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME)) | |
) | |
model = model_class.from_pretrained(tmpdirname) | |
after_outputs = model(self._prepare_for_class(inputs_dict, model_class)) | |
self.assert_outputs_same(after_outputs, outputs) | |
def test_save_load_config(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
outputs = model(self._prepare_for_class(inputs_dict, model_class)) | |
model_config = model.get_config() | |
# make sure that returned config is jsonifiable, which is required by keras | |
json.dumps(model_config) | |
new_model = model_class.from_config(model.get_config()) | |
# make sure it also accepts a normal config | |
_ = model_class.from_config(model.config) | |
_ = new_model(self._prepare_for_class(inputs_dict, model_class)) # Build model | |
new_model.set_weights(model.get_weights()) | |
after_outputs = new_model(self._prepare_for_class(inputs_dict, model_class)) | |
self.assert_outputs_same(after_outputs, outputs) | |
def test_saved_model_creation(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.output_hidden_states = False | |
config.output_attentions = False | |
if hasattr(config, "use_cache"): | |
config.use_cache = False | |
model_class = self.all_model_classes[0] | |
class_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
model = model_class(config) | |
model(class_inputs_dict) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname, saved_model=True) | |
saved_model_dir = os.path.join(tmpdirname, "saved_model", "1") | |
self.assertTrue(os.path.exists(saved_model_dir)) | |
def test_prepare_serving_output(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.output_hidden_states = True | |
config.output_attentions = self.has_attentions | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
inputs = self._prepare_for_class(inputs_dict, model_class) | |
outputs = model(inputs) | |
serving_outputs = model.serving_output(outputs) | |
for k, v in serving_outputs.items(): | |
# Check that we have one of three possible outputs: None, tuple of tensors or a tensor | |
if isinstance(v, tuple): | |
self.assertTrue(all(isinstance(elem, tf.Tensor) for elem in v)) | |
elif v is not None: | |
self.assertIsInstance(v, tf.Tensor) | |
else: | |
self.assertIsNone(v) | |
def test_forward_signature(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
signature = inspect.signature(model.call) | |
# signature.parameters is an OrderedDict => so arg_names order is deterministic | |
arg_names = [*signature.parameters.keys()] | |
if model.config.is_encoder_decoder: | |
expected_arg_names = [ | |
"input_ids", | |
"attention_mask", | |
"decoder_input_ids", | |
"decoder_attention_mask", | |
] | |
expected_arg_names.extend(["decoder_position_ids"] if "decoder_position_ids" in arg_names else []) | |
expected_arg_names.extend( | |
["head_mask", "decoder_head_mask"] if "head_mask" and "decoder_head_mask" in arg_names else [] | |
) | |
expected_arg_names.extend( | |
["cross_attn_head_mask", "encoder_outputs"] | |
if "cross_attn_head_mask" in arg_names | |
else ["encoder_outputs"] | |
) | |
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names) | |
else: | |
expected_arg_names = ["input_ids"] | |
self.assertListEqual(arg_names[:1], expected_arg_names) | |
def test_onnx_compliancy(self): | |
if not self.test_onnx: | |
return | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
INTERNAL_OPS = [ | |
"Assert", | |
"AssignVariableOp", | |
"EmptyTensorList", | |
"ReadVariableOp", | |
"ResourceGather", | |
"TruncatedNormal", | |
"VarHandleOp", | |
"VarIsInitializedOp", | |
] | |
onnx_ops = [] | |
with open(os.path.join(".", "utils", "tf_ops", "onnx.json")) as f: | |
onnx_opsets = json.load(f)["opsets"] | |
for i in range(1, self.onnx_min_opset + 1): | |
onnx_ops.extend(onnx_opsets[str(i)]) | |
for model_class in self.all_model_classes: | |
model_op_names = set() | |
with tf.Graph().as_default() as g: | |
model = model_class(config) | |
model.build() | |
for op in g.get_operations(): | |
model_op_names.add(op.node_def.op) | |
model_op_names = sorted(model_op_names) | |
incompatible_ops = [] | |
for op in model_op_names: | |
if op not in onnx_ops and op not in INTERNAL_OPS: | |
incompatible_ops.append(op) | |
self.assertEqual(len(incompatible_ops), 0, incompatible_ops) | |
# `tf2onnx` issue page: https://github.com/onnx/tensorflow-onnx/issues/2172 | |
# TODO: undo skip once a fix is done in `tf2onnx` | |
def test_onnx_runtime_optimize(self): | |
if not self.test_onnx: | |
return | |
import onnxruntime | |
import tf2onnx | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes[:2]: | |
model = model_class(config) | |
model.build() | |
onnx_model_proto, _ = tf2onnx.convert.from_keras(model, opset=self.onnx_min_opset) | |
onnxruntime.InferenceSession(onnx_model_proto.SerializeToString()) | |
def test_keras_save_load(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
tf_main_layer_classes = { | |
module_member | |
for model_class in self.all_model_classes | |
for module in (import_module(model_class.__module__),) | |
for module_member_name in dir(module) | |
if module_member_name.endswith("MainLayer") | |
# This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. | |
and module_member_name[: -len("MainLayer")] == model_class.__name__[: -len("Model")] | |
for module_member in (getattr(module, module_member_name),) | |
if isinstance(module_member, type) | |
and tf.keras.layers.Layer in module_member.__bases__ | |
and getattr(module_member, "_keras_serializable", False) | |
} | |
for main_layer_class in tf_main_layer_classes: | |
# T5MainLayer needs an embed_tokens parameter when called without the inputs_embeds parameter | |
if "T5" in main_layer_class.__name__: | |
# Take the same values than in TFT5ModelTester for this shared layer | |
shared = TFSharedEmbeddings(99, 32, name="shared") | |
config.use_cache = inputs_dict.pop("use_cache", None) | |
main_layer = main_layer_class(config, embed_tokens=shared) | |
else: | |
main_layer = main_layer_class(config) | |
symbolic_inputs = { | |
name: tf.keras.Input(tensor.shape[1:], dtype=tensor.dtype) for name, tensor in inputs_dict.items() | |
} | |
model = tf.keras.Model(symbolic_inputs, outputs=main_layer(symbolic_inputs)) | |
outputs = model(inputs_dict) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "keras_model.h5") | |
model.save(filepath) | |
if "T5" in main_layer_class.__name__: | |
model = tf.keras.models.load_model( | |
filepath, | |
custom_objects={ | |
main_layer_class.__name__: main_layer_class, | |
"TFSharedEmbeddings": TFSharedEmbeddings, | |
}, | |
) | |
else: | |
model = tf.keras.models.load_model( | |
filepath, custom_objects={main_layer_class.__name__: main_layer_class} | |
) | |
assert isinstance(model, tf.keras.Model) | |
after_outputs = model(inputs_dict) | |
self.assert_outputs_same(after_outputs, outputs) | |
def assert_outputs_same(self, after_outputs, outputs): | |
# Make sure we don't have nans | |
if isinstance(after_outputs, tf.Tensor): | |
out_1 = after_outputs.numpy() | |
elif isinstance(after_outputs, dict): | |
out_1 = after_outputs[list(after_outputs.keys())[0]].numpy() | |
else: | |
out_1 = after_outputs[0].numpy() | |
out_2 = outputs[0].numpy() | |
self.assertEqual(out_1.shape, out_2.shape) | |
out_1 = out_1[~np.isnan(out_1)] | |
out_2 = out_2[~np.isnan(out_2)] | |
max_diff = np.amax(np.abs(out_1 - out_2)) | |
self.assertLessEqual(max_diff, 1e-5) | |
# Don't copy this method to model specific test file! | |
# TODO: remove this method once the issues are all fixed! | |
def _make_attention_mask_non_null(self, inputs_dict): | |
"""Make sure no sequence has all zeros as attention mask""" | |
for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]: | |
if k in inputs_dict: | |
attention_mask = inputs_dict[k] | |
# Make sure no all 0s attention masks - to avoid failure at this moment. | |
# Put `1` at the beginning of sequences to make it still work when combining causal attention masks. | |
# TODO: remove this line once a fix regarding large negative values for attention mask is done. | |
attention_mask = tf.concat( | |
[tf.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], axis=-1 | |
) | |
# Here we make the first sequence with all 0s as attention mask. | |
# Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative | |
# values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks. | |
# TODO: enable this block once the large negative values thing is cleaned up. | |
# (see https://github.com/huggingface/transformers/issues/14859) | |
# attention_mask = tf.concat( | |
# [ | |
# tf.zeros_like(attention_mask[:1], dtype=tf.int32), | |
# tf.cast(attention_mask[1:], dtype=tf.int32) | |
# ], | |
# axis=0 | |
# ) | |
inputs_dict[k] = attention_mask | |
# Don't copy this method to model specific test file! | |
# TODO: remove this method once the issues are all fixed! | |
def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class): | |
"""For temporarily ignoring some failed test cases (issues to be fixed)""" | |
tf_keys = {k for k, v in tf_outputs.items() if v is not None} | |
pt_keys = {k for k, v in pt_outputs.items() if v is not None} | |
key_differences = tf_keys.symmetric_difference(pt_keys) | |
if model_class.__name__ in [ | |
"TFFlaubertWithLMHeadModel", | |
"TFFunnelForPreTraining", | |
"TFElectraForPreTraining", | |
"TFXLMWithLMHeadModel", | |
"TFTransfoXLLMHeadModel", | |
]: | |
for k in key_differences: | |
if k in ["loss", "losses"]: | |
tf_keys.discard(k) | |
pt_keys.discard(k) | |
elif model_class.__name__.startswith("TFGPT2"): | |
# `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple. | |
tf_keys.discard("past_key_values") | |
pt_keys.discard("past_key_values") | |
# create new outputs from the remaining fields | |
new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys}) | |
new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys}) | |
return new_tf_outputs, new_pt_outputs | |
def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None): | |
"""Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way. | |
Args: | |
model_class: The class of the model that is currently testing. For example, `TFBertModel`, | |
TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative | |
error messages. | |
name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc. | |
attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element | |
being a named field in the output. | |
""" | |
self.assertEqual(type(name), str) | |
if attributes is not None: | |
self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`") | |
# Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`). | |
if isinstance(tf_outputs, ModelOutput): | |
self.assertTrue( | |
isinstance(pt_outputs, ModelOutput), | |
f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is", | |
) | |
# Don't copy this block to model specific test file! | |
# TODO: remove this method and this line after issues are fixed | |
tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class) | |
tf_keys = [k for k, v in tf_outputs.items() if v is not None] | |
pt_keys = [k for k, v in pt_outputs.items() if v is not None] | |
self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch") | |
# convert to the case of `tuple` | |
# appending each key to the current (string) `names` | |
attributes = tuple([f"{name}.{k}" for k in tf_keys]) | |
self.check_pt_tf_outputs( | |
tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes | |
) | |
# Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.) | |
elif type(tf_outputs) in [tuple, list]: | |
self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch") | |
self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch") | |
if attributes is not None: | |
# case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`) | |
self.assertEqual( | |
len(attributes), | |
len(tf_outputs), | |
f"{name}: The tuple `names` should have the same length as `tf_outputs`", | |
) | |
else: | |
# case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `names` | |
attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))]) | |
for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes): | |
self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr) | |
elif isinstance(tf_outputs, tf.Tensor): | |
self.assertTrue( | |
isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is" | |
) | |
tf_outputs = tf_outputs.numpy() | |
pt_outputs = pt_outputs.detach().to("cpu").numpy() | |
self.assertEqual( | |
tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch" | |
) | |
# deal with NumPy's scalars to make replacing nan values by 0 work. | |
if np.isscalar(tf_outputs): | |
tf_outputs = np.array([tf_outputs]) | |
pt_outputs = np.array([pt_outputs]) | |
tf_nans = np.isnan(tf_outputs) | |
pt_nans = np.isnan(pt_outputs) | |
pt_outputs[tf_nans] = 0 | |
tf_outputs[tf_nans] = 0 | |
pt_outputs[pt_nans] = 0 | |
tf_outputs[pt_nans] = 0 | |
max_diff = np.amax(np.abs(tf_outputs - pt_outputs)) | |
self.assertLessEqual(max_diff, tol, f"{name}: Difference between torch and tf is {max_diff} (>= {tol}).") | |
else: | |
raise ValueError( | |
"`tf_outputs` should be an instance of `tf.Tensor`, a `tuple`, or an instance of `tf.Tensor`. Got" | |
f" {type(tf_outputs)} instead." | |
) | |
def prepare_pt_inputs_from_tf_inputs(self, tf_inputs_dict): | |
pt_inputs_dict = {} | |
for name, key in tf_inputs_dict.items(): | |
if type(key) == bool: | |
pt_inputs_dict[name] = key | |
elif name == "input_values": | |
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32) | |
elif name == "pixel_values": | |
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32) | |
elif name == "input_features": | |
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32) | |
# other general float inputs | |
elif tf_inputs_dict[name].dtype.is_floating: | |
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.float32) | |
else: | |
pt_inputs_dict[name] = torch.from_numpy(key.numpy()).to(torch.long) | |
return pt_inputs_dict | |
def check_pt_tf_models(self, tf_model, pt_model, tf_inputs_dict): | |
pt_inputs_dict = self.prepare_pt_inputs_from_tf_inputs(tf_inputs_dict) | |
# send pytorch inputs to the correct device | |
pt_inputs_dict = { | |
k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items() | |
} | |
# send pytorch model to the correct device | |
pt_model.to(torch_device) | |
# Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences | |
pt_model.eval() | |
with torch.no_grad(): | |
pt_outputs = pt_model(**pt_inputs_dict) | |
tf_outputs = tf_model(tf_inputs_dict) | |
# tf models returned loss is usually a tensor rather than a scalar. | |
# (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`) | |
# Change it here to a scalar to match PyTorch models' loss | |
tf_loss = getattr(tf_outputs, "loss", None) | |
if tf_loss is not None: | |
tf_outputs.loss = tf.math.reduce_mean(tf_loss) | |
self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(tf_model)) | |
def test_pt_tf_model_equivalence(self, allow_missing_keys=False): | |
import transformers | |
for model_class in self.all_model_classes: | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
# Output all for aggressive testing | |
config.output_hidden_states = True | |
config.output_attentions = self.has_attentions | |
# Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency | |
# of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`. | |
# TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it. | |
self._make_attention_mask_non_null(inputs_dict) | |
pt_model_class_name = model_class.__name__[2:] # Skip the "TF" at the beginning | |
pt_model_class = getattr(transformers, pt_model_class_name) | |
tf_model = model_class(config) | |
pt_model = pt_model_class(config) | |
tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class) | |
tf_inputs_dict_with_labels = self._prepare_for_class( | |
inputs_dict, | |
model_class, | |
# Not all models accept "labels" in the forward pass (yet :) ) | |
return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False, | |
) | |
# For some models (e.g. base models), there is no label returned. | |
# Set the input dict to `None` to avoid check outputs twice for the same input dicts. | |
if not set(tf_inputs_dict_with_labels.keys()).symmetric_difference(tf_inputs_dict.keys()): | |
tf_inputs_dict_with_labels = None | |
# Check we can load pt model in tf and vice-versa with model => model functions | |
tf_model = transformers.load_pytorch_model_in_tf2_model( | |
tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys | |
) | |
pt_model = transformers.load_tf2_model_in_pytorch_model( | |
pt_model, tf_model, allow_missing_keys=allow_missing_keys | |
) | |
# Original test: check without `labels` | |
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) | |
# check with `labels` | |
if tf_inputs_dict_with_labels: | |
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict_with_labels) | |
# Check we can load pt model in tf and vice-versa with checkpoint => model functions | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin") | |
torch.save(pt_model.state_dict(), pt_checkpoint_path) | |
tf_model = transformers.load_pytorch_checkpoint_in_tf2_model( | |
tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys | |
) | |
tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5") | |
tf_model.save_weights(tf_checkpoint_path) | |
pt_model = transformers.load_tf2_checkpoint_in_pytorch_model( | |
pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys | |
) | |
# Original test: check without `labels` | |
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict) | |
# check with `labels` | |
if tf_inputs_dict_with_labels: | |
self.check_pt_tf_models(tf_model, pt_model, tf_inputs_dict_with_labels) | |
def test_compile_tf_model(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes[:2]: | |
# Prepare our model | |
model = model_class(config) | |
# These are maximally general inputs for the model, with multiple None dimensions | |
# Hopefully this will catch any conditionals that fail for flexible shapes | |
functional_inputs = { | |
key: tf.keras.Input(shape=val.shape[1:], dtype=val.dtype, name=key) | |
for key, val in model.input_signature.items() | |
if key in model.dummy_inputs | |
} | |
outputs_dict = model(functional_inputs) | |
hidden_states = outputs_dict[0] | |
# Compile extended model | |
functional_model = tf.keras.Model(inputs=functional_inputs, outputs=hidden_states) | |
model_out = functional_model.predict(model.dummy_inputs) # Check we can pass inputs with the Keras API | |
self.assertTrue(model_out is not None) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
functional_model.save(tmpdirname) # Ensure we can save/export the whole functional model | |
def test_keyword_and_dict_args(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
inputs = self._prepare_for_class(inputs_dict, model_class) | |
outputs_dict = model(inputs) | |
inputs_keywords = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class)) | |
outputs_keywords = model(**inputs_keywords) | |
output_dict = outputs_dict[0].numpy() | |
output_keywords = outputs_keywords[0].numpy() | |
self.assertLess(np.sum(np.abs(output_dict - output_keywords)), 1e-6) | |
def test_attention_outputs(self): | |
if not self.has_attentions: | |
self.skipTest(reason="Model does not output attentions") | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.return_dict = True | |
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", self.model_tester.seq_length) | |
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", self.model_tester.seq_length) | |
decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length) | |
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length) | |
def check_decoder_attentions_output(outputs): | |
out_len = len(outputs) | |
self.assertEqual(min(out_len % 2, out_len % 5), 0) # differentiation due to newly added cross_attentions | |
decoder_attentions = outputs.decoder_attentions | |
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(decoder_attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length], | |
) | |
def check_encoder_attentions_output(outputs): | |
attentions = [ | |
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) | |
] | |
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers) | |
self.assertListEqual( | |
list(attentions[0].shape[-3:]), | |
[self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length], | |
) | |
for model_class in self.all_model_classes: | |
inputs_dict["output_attentions"] = True | |
config.output_hidden_states = False | |
model = model_class(config) | |
outputs = model(self._prepare_for_class(inputs_dict, model_class)) | |
out_len = len(outputs) | |
self.assertEqual(config.output_hidden_states, False) | |
check_encoder_attentions_output(outputs) | |
if self.is_encoder_decoder: | |
model = model_class(config) | |
outputs = model(self._prepare_for_class(inputs_dict, model_class)) | |
self.assertEqual(config.output_hidden_states, False) | |
check_decoder_attentions_output(outputs) | |
# Check that output attentions can also be changed via the config | |
del inputs_dict["output_attentions"] | |
config.output_attentions = True | |
model = model_class(config) | |
outputs = model(self._prepare_for_class(inputs_dict, model_class)) | |
self.assertEqual(config.output_hidden_states, False) | |
check_encoder_attentions_output(outputs) | |
# Check attention is always last and order is fine | |
inputs_dict["output_attentions"] = True | |
config.output_hidden_states = True | |
model = model_class(config) | |
outputs = model(self._prepare_for_class(inputs_dict, model_class)) | |
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs)) | |
self.assertEqual(model.config.output_hidden_states, True) | |
check_encoder_attentions_output(outputs) | |
def test_headmasking(self): | |
if not self.test_head_masking: | |
return | |
random.Random().seed(42) | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
random.Random().seed() | |
inputs_dict["output_attentions"] = True | |
config.output_hidden_states = True | |
configs_no_init = _config_zero_init(config) # To be sure we have no Nan | |
for model_class in self.all_model_classes: | |
model = model_class(config=configs_no_init) | |
# Prepare head_mask | |
def prepare_layer_head_mask(i, attention_heads, num_hidden_layers): | |
if i == 0: | |
return tf.concat( | |
(tf.zeros(1, dtype=tf.float32), tf.ones(attention_heads - 1, dtype=tf.float32)), 0 | |
) | |
elif i == num_hidden_layers - 1: | |
return tf.concat( | |
(tf.zeros(attention_heads - 1, dtype=tf.float32), tf.ones(1, dtype=tf.float32)), 0 | |
) | |
else: | |
return tf.ones(attention_heads, dtype=tf.float32) | |
head_mask = tf.stack( | |
[ | |
prepare_layer_head_mask(i, config.num_attention_heads, config.num_hidden_layers) | |
for i in range(config.num_hidden_layers) | |
], | |
0, | |
) | |
inputs = self._prepare_for_class(inputs_dict, model_class).copy() | |
inputs["head_mask"] = head_mask | |
if model.config.is_encoder_decoder: | |
signature = inspect.signature(model.call) | |
arg_names = [*signature.parameters.keys()] | |
if "decoder_head_mask" in arg_names: # necessary diferentiation because of T5 model | |
inputs["decoder_head_mask"] = head_mask | |
if "cross_attn_head_mask" in arg_names: | |
inputs["cross_attn_head_mask"] = head_mask | |
outputs = model(**inputs, return_dict=True) | |
def check_attentions_validity(attentions): | |
# Remove Nan | |
for t in attentions: | |
self.assertLess( | |
(tf.math.reduce_sum(tf.cast(tf.math.is_nan(t), tf.float32))).numpy(), (tf.size(t) / 4).numpy() | |
) # Check we don't have more than 25% nans (arbitrary) | |
attentions = [ | |
tf.where(tf.math.is_nan(t), 0.0, t) for t in attentions | |
] # remove them (the test is less complete) | |
self.assertAlmostEqual(tf.math.reduce_sum(attentions[0][..., 0, :, :]).numpy(), 0.0) | |
self.assertNotEqual(tf.math.reduce_sum(attentions[0][..., -1, :, :]).numpy(), 0.0) | |
if len(attentions) > 2: # encoder-decodere models have only 2 layers in each modules | |
self.assertNotEqual(tf.math.reduce_sum(attentions[1][..., 0, :, :]).numpy(), 0.0) | |
self.assertAlmostEqual(tf.math.reduce_sum(attentions[-1][..., -2, :, :]).numpy(), 0.0) | |
self.assertNotEqual(tf.math.reduce_sum(attentions[-1][..., -1, :, :]).numpy(), 0.0) | |
if model.config.is_encoder_decoder: | |
check_attentions_validity(outputs.encoder_attentions) | |
check_attentions_validity(outputs.decoder_attentions) | |
if "cross_attn_head_mask" in arg_names: | |
check_attentions_validity(outputs.cross_attentions) | |
else: | |
check_attentions_validity(outputs.attentions) | |
def test_hidden_states_output(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
def check_hidden_states_output(config, inputs_dict, model_class): | |
model = model_class(config) | |
outputs = model(self._prepare_for_class(inputs_dict, model_class)) | |
expected_num_layers = getattr( | |
self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1 | |
) | |
if model.config.is_encoder_decoder: | |
encoder_hidden_states = outputs.encoder_hidden_states | |
decoder_hidden_states = outputs.decoder_hidden_states | |
self.assertEqual(config.output_attentions, False) | |
self.assertEqual(len(encoder_hidden_states), expected_num_layers) | |
self.assertListEqual( | |
list(encoder_hidden_states[0].shape[-2:]), | |
[self.model_tester.seq_length, self.model_tester.hidden_size], | |
) | |
self.assertEqual(len(decoder_hidden_states), expected_num_layers) | |
self.assertListEqual( | |
list(decoder_hidden_states[0].shape[-2:]), | |
[self.model_tester.seq_length, self.model_tester.hidden_size], | |
) | |
else: | |
hidden_states = outputs.hidden_states | |
self.assertEqual(config.output_attentions, False) | |
self.assertEqual(len(hidden_states), expected_num_layers) | |
self.assertListEqual( | |
list(hidden_states[0].shape[-2:]), | |
[self.model_tester.seq_length, self.model_tester.hidden_size], | |
) | |
for model_class in self.all_model_classes: | |
inputs_dict["output_hidden_states"] = True | |
check_hidden_states_output(config, inputs_dict, model_class) | |
del inputs_dict["output_hidden_states"] | |
config.output_hidden_states = True | |
check_hidden_states_output(config, inputs_dict, model_class) | |
def test_model_common_attributes(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
text_in_text_out_models = ( | |
get_values(TF_MODEL_FOR_CAUSAL_LM_MAPPING) | |
+ get_values(TF_MODEL_FOR_MASKED_LM_MAPPING) | |
+ get_values(TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING) | |
) | |
speech_in_text_out_models = get_values(TF_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING) | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
self.assertIsInstance(model.get_input_embeddings(), tf.keras.layers.Layer) | |
legacy_text_in_text_out = model.get_lm_head() is not None | |
if model_class in text_in_text_out_models or legacy_text_in_text_out: | |
out_embeddings = model.get_output_embeddings() | |
self.assertIsInstance(out_embeddings, tf.keras.layers.Layer) | |
bias = model.get_bias() | |
if bias is not None: | |
self.assertIsInstance(bias, dict) | |
for _, v in bias.items(): | |
self.assertIsInstance(v, tf.Variable) | |
elif model_class in speech_in_text_out_models: | |
out_embeddings = model.get_output_embeddings() | |
self.assertIsInstance(out_embeddings, tf.keras.layers.Layer) | |
bias = model.get_bias() | |
self.assertIsNone(bias) | |
else: | |
out_embeddings = model.get_output_embeddings() | |
assert out_embeddings is None | |
bias = model.get_bias() | |
self.assertIsNone(bias) | |
def test_determinism(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
first, second = ( | |
model(self._prepare_for_class(inputs_dict, model_class), training=False)[0], | |
model(self._prepare_for_class(inputs_dict, model_class), training=False)[0], | |
) | |
out_1 = first.numpy() | |
out_2 = second.numpy() | |
out_1 = out_1[~np.isnan(out_1)] | |
out_2 = out_2[~np.isnan(out_2)] | |
max_diff = np.amax(np.abs(out_1 - out_2)) | |
self.assertLessEqual(max_diff, 1e-5) | |
def test_model_outputs_equivalence(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}): | |
tuple_output = model(tuple_inputs, return_dict=False, **additional_kwargs) | |
dict_output = model(dict_inputs, return_dict=True, **additional_kwargs).to_tuple() | |
def recursive_check(tuple_object, dict_object): | |
if isinstance(tuple_object, (List, Tuple)): | |
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object): | |
recursive_check(tuple_iterable_value, dict_iterable_value) | |
elif tuple_object is None: | |
return | |
else: | |
self.assertTrue( | |
all(tf.equal(tuple_object, dict_object)), | |
msg=( | |
"Tuple and dict output are not equal. Difference:" | |
f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object))}" | |
), | |
) | |
recursive_check(tuple_output, dict_output) | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
tuple_inputs = self._prepare_for_class(inputs_dict, model_class) | |
dict_inputs = self._prepare_for_class(inputs_dict, model_class) | |
check_equivalence(model, tuple_inputs, dict_inputs) | |
tuple_inputs = self._prepare_for_class(inputs_dict, model_class) | |
dict_inputs = self._prepare_for_class(inputs_dict, model_class) | |
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) | |
if self.has_attentions: | |
tuple_inputs = self._prepare_for_class(inputs_dict, model_class) | |
dict_inputs = self._prepare_for_class(inputs_dict, model_class) | |
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) | |
# Not all models accept "labels" in the forward pass (yet :) ) | |
if "labels" in inspect.signature(model.call).parameters.keys(): | |
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
check_equivalence(model, tuple_inputs, dict_inputs) | |
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True}) | |
if self.has_attentions: | |
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True}) | |
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
check_equivalence( | |
model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True} | |
) | |
def test_inputs_embeds(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
inputs = copy.deepcopy(inputs_dict) | |
if not self.is_encoder_decoder: | |
input_ids = inputs["input_ids"] | |
del inputs["input_ids"] | |
else: | |
encoder_input_ids = inputs["input_ids"] | |
decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids) | |
del inputs["input_ids"] | |
inputs.pop("decoder_input_ids", None) | |
if not self.is_encoder_decoder: | |
inputs["inputs_embeds"] = model.get_input_embeddings()(input_ids) | |
else: | |
inputs["inputs_embeds"] = model.get_input_embeddings()(encoder_input_ids) | |
inputs["decoder_inputs_embeds"] = model.get_input_embeddings()(decoder_input_ids) | |
inputs = self._prepare_for_class(inputs, model_class) | |
model(inputs) | |
def test_numpy_arrays_inputs(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
def prepare_numpy_arrays(inputs_dict): | |
inputs_np_dict = {} | |
for k, v in inputs_dict.items(): | |
if tf.is_tensor(v): | |
inputs_np_dict[k] = v.numpy() | |
else: | |
inputs_np_dict[k] = np.array(k) | |
return inputs_np_dict | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
inputs = self._prepare_for_class(inputs_dict, model_class) | |
inputs_np = prepare_numpy_arrays(inputs) | |
output_for_dict_input = model(inputs_np) | |
output_for_kw_input = model(**inputs_np) | |
self.assert_outputs_same(output_for_dict_input, output_for_kw_input) | |
def test_valid_input_signature_and_dummies(self): | |
config, _ = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
call_args = inspect.signature(model.call).parameters | |
for key in model.input_signature: | |
self.assertIn(key, call_args) | |
for key in model.dummy_inputs: | |
self.assertIn(key, call_args) | |
def test_resize_token_embeddings(self): | |
# TODO (joao): after the embeddings refactor is complete, rework this test so as to rely exclusively on | |
# tf.keras.layers.Embedding | |
if not self.test_resize_embeddings: | |
return | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
def _get_word_embedding_weight(model, embedding_layer): | |
if isinstance(embedding_layer, tf.keras.layers.Embedding): | |
# builds the embeddings layer | |
model.build() | |
return embedding_layer.embeddings | |
else: | |
return model._get_word_embedding_weight(embedding_layer) | |
for model_class in self.all_model_classes: | |
for size in [config.vocab_size - 10, config.vocab_size + 10, None]: | |
# build the embeddings | |
model = model_class(config=copy.deepcopy(config)) # `resize_token_embeddings` mutates `config` | |
old_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings()) | |
old_bias = model.get_bias() | |
old_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings()) | |
# reshape the embeddings | |
model.resize_token_embeddings(size) | |
new_input_embeddings = _get_word_embedding_weight(model, model.get_input_embeddings()) | |
new_bias = model.get_bias() | |
new_output_embeddings = _get_word_embedding_weight(model, model.get_output_embeddings()) | |
# check that the resized embeddings size matches the desired size. | |
assert_size = size if size is not None else config.vocab_size | |
self.assertEqual(new_input_embeddings.shape[0], assert_size) | |
# check that weights remain the same after resizing | |
models_equal = True | |
for p1, p2 in zip(old_input_embeddings.value(), new_input_embeddings.value()): | |
if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0: | |
models_equal = False | |
self.assertTrue(models_equal) | |
if old_bias is not None and new_bias is not None: | |
for old_weight, new_weight in zip(old_bias.values(), new_bias.values()): | |
self.assertEqual(new_weight.shape[-1], assert_size) | |
models_equal = True | |
for p1, p2 in zip(tf.squeeze(old_weight), tf.squeeze(new_weight)): | |
if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0: | |
models_equal = False | |
self.assertTrue(models_equal) | |
if old_output_embeddings is not None and new_output_embeddings is not None: | |
self.assertEqual(new_output_embeddings.shape[0], assert_size) | |
self.assertEqual(new_output_embeddings.shape[1], old_output_embeddings.shape[1]) | |
models_equal = True | |
for p1, p2 in zip(old_output_embeddings.value(), new_output_embeddings.value()): | |
if tf.math.reduce_sum(tf.math.abs(p1 - p2)) > 0: | |
models_equal = False | |
self.assertTrue(models_equal) | |
# TODO (Joao): this test is not slow, but it's tagged as such to keep track of failures on the scheduled CI runs, | |
# while passing push CI. Fix the underlying issues and remove the tag. | |
def test_save_load_after_resize_token_embeddings(self): | |
if not self.test_resize_embeddings: | |
return | |
config, original_inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
# create a model with resized (expended) embeddings | |
new_tokens_size = 10 | |
old_total_size = config.vocab_size | |
new_total_size = old_total_size + new_tokens_size | |
model = model_class(config=copy.deepcopy(config)) # `resize_token_embeddings` mutates `config` | |
model.build() | |
model.resize_token_embeddings(new_total_size) | |
# fetch the output for an input exclusively made of new members of the vocabulary | |
inputs_dict = copy.deepcopy(original_inputs_dict) | |
ids_feat_name = None | |
if "input_ids" in inputs_dict: | |
ids_feat_name = "input_ids" | |
elif "decoder_input_ids" in inputs_dict: | |
ids_feat_name = "decoder_input_ids" | |
else: | |
assert False, "No input ids feature found in the inputs dict" | |
new_vocab_input_ids = ids_tensor(inputs_dict[ids_feat_name].shape, new_tokens_size) | |
new_vocab_input_ids += old_total_size | |
inputs_dict[ids_feat_name] = new_vocab_input_ids | |
if "input_ids" in inputs_dict: | |
inputs_dict["input_ids"] = new_vocab_input_ids | |
if "decoder_input_ids" in inputs_dict: | |
inputs_dict["decoder_input_ids"] = new_vocab_input_ids | |
prepared_inputs = self._prepare_for_class(inputs_dict, model_class) | |
outputs = model(**prepared_inputs) | |
# save and load the model | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
model.save_pretrained(tmpdirname, saved_model=False) | |
model = model_class.from_pretrained(tmpdirname) | |
restored_model_outputs = model(**prepared_inputs) | |
# check that the output for the restored model is the same | |
self.assert_outputs_same(restored_model_outputs, outputs) | |
def test_embeddings_out_of_bounds_raise_exception(self): | |
# TF embeddings layers don't raise an exception when an index is out of bounds on GPU, so we manually raise it. | |
# This test should only fail on GPU for models where we haven't added the safety check. | |
if not self.test_resize_embeddings: | |
return | |
config, original_inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config=config) | |
inputs_dict = copy.deepcopy(original_inputs_dict) | |
if "input_ids" in inputs_dict: | |
inputs_dict["input_ids"] = inputs_dict["input_ids"] * int(1e9) | |
if "decoder_input_ids" in inputs_dict: | |
inputs_dict["decoder_input_ids"] = inputs_dict["decoder_input_ids"] * int(1e9) | |
prepared_inputs = self._prepare_for_class(inputs_dict, model_class) | |
with self.assertRaises(tf.errors.InvalidArgumentError): | |
model(**prepared_inputs) | |
def test_lm_head_model_random_no_beam_search_generate(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
input_ids = inputs_dict.get("input_ids", None) | |
# iterate over all generative models | |
for model_class in self.all_generative_model_classes: | |
model = model_class(config) | |
if config.bos_token_id is None: | |
# if bos token id is not defined model needs input_ids | |
with self.assertRaises(ValueError): | |
model.generate(do_sample=True, max_length=5) | |
# num_return_sequences = 1 | |
self._check_generated_ids(model.generate(input_ids, do_sample=True)) | |
elif model_class.__name__ not in ["TFSpeech2TextForConditionalGeneration"]: | |
# Models with non-text inputs won't work here; num_return_sequences = 1 | |
self._check_generated_ids(model.generate(do_sample=True, max_length=5)) | |
with self.assertRaises(ValueError): | |
# generating multiple sequences when no beam search generation | |
# is not allowed as it would always generate the same sequences | |
model.generate(input_ids, do_sample=False, num_return_sequences=2) | |
# num_return_sequences > 1, sample | |
self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2)) | |
# check bad words tokens language generation | |
# create list of 1-seq bad token and list of 2-seq of bad tokens | |
bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)] | |
output_tokens = model.generate( | |
input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2 | |
) | |
# only count generated tokens | |
generated_ids = output_tokens[:, input_ids.shape[-1] :] | |
self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids)) | |
def test_lm_head_model_no_beam_search_generate_dict_outputs(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
input_ids = inputs_dict.get("input_ids", None) | |
if input_ids is None: | |
input_ids = inputs_dict.get("input_features", None) | |
# iterate over all generative models | |
for model_class in self.all_generative_model_classes: | |
model = model_class(config) | |
output_greedy = model.generate( | |
input_ids, | |
do_sample=False, | |
output_scores=True, | |
output_hidden_states=True, | |
output_attentions=True, | |
return_dict_in_generate=True, | |
) | |
output_sample = model.generate( | |
input_ids, | |
do_sample=True, | |
output_scores=True, | |
output_hidden_states=True, | |
output_attentions=True, | |
return_dict_in_generate=True, | |
) | |
if model.config.is_encoder_decoder: | |
self.assertIsInstance(output_greedy, TFGreedySearchEncoderDecoderOutput) | |
self.assertIsInstance(output_sample, TFSampleEncoderDecoderOutput) | |
else: | |
self.assertIsInstance(output_greedy, TFGreedySearchDecoderOnlyOutput) | |
self.assertIsInstance(output_sample, TFSampleDecoderOnlyOutput) | |
def test_lm_head_model_random_beam_search_generate(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
input_ids = inputs_dict.get("input_ids", None) | |
for model_class in self.all_generative_model_classes: | |
model = model_class(config) | |
if config.bos_token_id is None: | |
# if bos token id is not defined model needs input_ids, num_return_sequences = 1 | |
self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2)) | |
else: | |
# num_return_sequences = 1 | |
self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2)) | |
with self.assertRaises(ValueError): | |
# generating more sequences than having beams leads is not possible | |
model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2) | |
# num_return_sequences > 1, sample | |
self._check_generated_ids( | |
model.generate( | |
input_ids, | |
do_sample=True, | |
num_beams=2, | |
num_return_sequences=2, | |
) | |
) | |
# num_return_sequences > 1, greedy | |
self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2)) | |
# check bad words tokens language generation | |
# create list of 1-seq bad token and list of 2-seq of bad tokens | |
bad_words_ids = [self._generate_random_bad_tokens(1, model), self._generate_random_bad_tokens(2, model)] | |
output_tokens = model.generate( | |
input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2 | |
) | |
# only count generated tokens | |
generated_ids = output_tokens[:, input_ids.shape[-1] :] | |
self.assertFalse(self._check_match_tokens(generated_ids.numpy().tolist(), bad_words_ids)) | |
def test_lm_head_model_beam_search_generate_dict_outputs(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
input_ids = inputs_dict.get("input_ids", None) | |
if input_ids is None: | |
input_ids = inputs_dict.get("input_features", None) | |
# iterate over all generative models | |
for model_class in self.all_generative_model_classes: | |
model = model_class(config) | |
output_beam_search = model.generate( | |
input_ids, | |
num_beams=2, | |
do_sample=False, | |
output_scores=True, | |
output_hidden_states=True, | |
output_attentions=True, | |
return_dict_in_generate=True, | |
) | |
output_beam_sample = model.generate( | |
input_ids, | |
num_beams=2, | |
do_sample=True, | |
output_scores=True, | |
output_hidden_states=True, | |
output_attentions=True, | |
return_dict_in_generate=True, | |
) | |
if model.config.is_encoder_decoder: | |
self.assertIsInstance(output_beam_search, TFBeamSearchEncoderDecoderOutput) | |
self.assertIsInstance(output_beam_sample, TFBeamSampleEncoderDecoderOutput) | |
else: | |
self.assertIsInstance(output_beam_search, TFBeamSearchDecoderOnlyOutput) | |
self.assertIsInstance(output_beam_sample, TFBeamSampleDecoderOnlyOutput) | |
def test_loss_computation(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
# The number of elements in the loss should be the same as the number of elements in the label | |
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) | |
added_label_names = sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=True) | |
if not added_label_names: | |
continue # This test is only for models with easily-separable labels | |
added_label = prepared_for_class[added_label_names[0]] | |
expected_loss_size = added_label.shape.as_list()[:1] | |
# Test that model correctly compute the loss with kwargs | |
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) | |
possible_input_names = {"input_ids", "pixel_values", "input_features", "input_values"} | |
input_name = possible_input_names.intersection(set(prepared_for_class)).pop() | |
model_input = prepared_for_class.pop(input_name) | |
outputs = model(model_input, **prepared_for_class) | |
if not isinstance(outputs, ModelOutput) or not hasattr(outputs, "loss"): | |
continue | |
loss = outputs.loss | |
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) | |
# Test that model correctly compute the loss when we mask some positions | |
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) | |
possible_input_names = {"input_ids", "pixel_values", "input_features", "input_values"} | |
input_name = possible_input_names.intersection(set(prepared_for_class)).pop() | |
model_input = prepared_for_class.pop(input_name) | |
if "labels" in prepared_for_class: | |
labels = prepared_for_class["labels"].numpy() | |
if len(labels.shape) > 1 and labels.shape[1] != 1: | |
labels[0] = -100 | |
prepared_for_class["labels"] = tf.convert_to_tensor(labels) | |
loss = model(model_input, **prepared_for_class)[0] | |
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) | |
self.assertTrue(not np.any(np.isnan(loss.numpy()))) | |
# Test that model correctly compute the loss with a dict | |
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) | |
loss = model(prepared_for_class)[0] | |
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) | |
# Test that model correctly compute the loss with a tuple | |
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) | |
# Get keys that were added with the _prepare_for_class function | |
label_keys = prepared_for_class.keys() - inputs_dict.keys() | |
signature = inspect.signature(model.call).parameters | |
signature_names = list(signature.keys()) | |
# Create a dictionary holding the location of the tensors in the tuple | |
tuple_index_mapping = {0: input_name} | |
for label_key in label_keys: | |
label_key_index = signature_names.index(label_key) | |
tuple_index_mapping[label_key_index] = label_key | |
sorted_tuple_index_mapping = sorted(tuple_index_mapping.items()) | |
# Initialize a list with their default values, update the values and convert to a tuple | |
list_input = [] | |
for name in signature_names: | |
if name != "kwargs": | |
list_input.append(signature[name].default) | |
for index, value in sorted_tuple_index_mapping: | |
list_input[index] = prepared_for_class[value] | |
tuple_input = tuple(list_input) | |
# Send to model | |
loss = model(tuple_input[:-1])[0] | |
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) | |
def check_keras_fit_results(self, val_loss1, val_loss2, atol=1e-2, rtol=1e-3): | |
self.assertTrue(np.allclose(val_loss1, val_loss2, atol=atol, rtol=rtol)) | |
def test_keras_fit(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
# Test that model correctly compute the loss with kwargs | |
prepared_for_class = self._prepare_for_class(inputs_dict.copy(), model_class, return_labels=True) | |
# We also remove "return_loss" as this is covered by the train_step when using fit() | |
prepared_for_class = { | |
key: val | |
for key, val in prepared_for_class.items() | |
if key not in ("head_mask", "decoder_head_mask", "cross_attn_head_mask", "return_loss") | |
} | |
if "labels" in prepared_for_class and "decoder_input_ids" in prepared_for_class: | |
del prepared_for_class["decoder_input_ids"] | |
accuracy_classes = [ | |
"ForPreTraining", | |
"ForCausalLM", | |
"ForMaskedLM", | |
"ForQuestionAnswering", | |
"ForMultipleChoice", | |
"ForSequenceClassification", | |
"ForTokenClassification", | |
"ForNextSentencePrediction", | |
"LMHeadModel", | |
] | |
for accuracy_class in accuracy_classes: | |
if model.__class__.__name__.endswith(accuracy_class): | |
metrics = [tf.keras.metrics.SparseCategoricalAccuracy()] | |
break | |
else: | |
metrics = [] | |
if hasattr(self.model_tester, "batch_size"): | |
sample_weight = tf.convert_to_tensor([0.5] * self.model_tester.batch_size, dtype=tf.float32) | |
else: | |
sample_weight = None | |
# Build the model so we can get some constant weights and check outputs | |
outputs = model(prepared_for_class) | |
if getattr(outputs, "loss", None) is None: | |
continue | |
model_weights = model.get_weights() | |
# Run eagerly to save some expensive compilation times | |
model.compile(optimizer=tf.keras.optimizers.SGD(0.0), run_eagerly=True, metrics=metrics) | |
# Make sure the model fits without crashing regardless of where we pass the labels | |
history1 = model.fit( | |
prepared_for_class, | |
validation_data=prepared_for_class, | |
sample_weight=sample_weight, | |
steps_per_epoch=1, | |
validation_steps=1, | |
shuffle=False, | |
) | |
val_loss1 = history1.history["val_loss"][0] | |
self.assertTrue(not isnan(val_loss1)) | |
accuracy1 = {key: val[0] for key, val in history1.history.items() if key.endswith("accuracy")} | |
possible_label_cols = { | |
"labels", | |
"label", | |
"label_ids", | |
"start_positions", | |
"start_position", | |
"end_positions", | |
"end_position", | |
"next_sentence_label", | |
} | |
label_names = possible_label_cols.intersection(set(prepared_for_class)) | |
if len(label_names) == 0: | |
# The next tests only make sense for models with separate inputs and labels, and do not make | |
# sense for models that don't clearly distinguish between the two (e.g. CLIP) | |
return | |
labels = {key: val for key, val in prepared_for_class.items() if key in label_names} | |
inputs_minus_labels = {key: val for key, val in prepared_for_class.items() if key not in label_names} | |
self.assertGreater(len(inputs_minus_labels), 0) | |
# We reinitialize the model here even though our learning rate was zero | |
# because BatchNorm updates weights by means other than gradient descent. | |
model.set_weights(model_weights) | |
history2 = model.fit( | |
inputs_minus_labels, | |
labels, | |
validation_data=(inputs_minus_labels, labels), | |
sample_weight=sample_weight, | |
steps_per_epoch=1, | |
validation_steps=1, | |
shuffle=False, | |
) | |
val_loss2 = history2.history["val_loss"][0] | |
self.assertTrue(not isnan(val_loss2)) | |
accuracy2 = {key: val[0] for key, val in history2.history.items() if key.endswith("accuracy")} | |
self.check_keras_fit_results(val_loss1, val_loss2) | |
self.assertEqual(history1.history.keys(), history2.history.keys()) | |
for key in history1.history.keys(): | |
if not key.startswith("val_"): | |
self.assertTrue("val_" + key in history1.history.keys(), "Outputs differ in train/test step!") | |
if metrics: | |
self.assertTrue(len(accuracy1) == len(accuracy2) > 0, "Missing metrics!") | |
def test_int_support(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
prepared_for_class = self._prepare_for_class( | |
inputs_dict.copy(), | |
model_class, | |
return_labels=True if "labels" in inspect.signature(model_class.call).parameters.keys() else False, | |
) | |
if not any( | |
tensor.dtype.is_integer for tensor in prepared_for_class.values() if isinstance(tensor, tf.Tensor) | |
): | |
return # No integer inputs means no need for this test | |
prepared_for_class = { | |
key: tf.cast(tensor, tf.int64) if isinstance(tensor, tf.Tensor) and tensor.dtype.is_integer else tensor | |
for key, tensor in prepared_for_class.items() | |
} | |
model = model_class(config) | |
model(**prepared_for_class) # No assertion, we're just checking this doesn't throw an error | |
int32_prepared_for_class = { | |
key: tf.cast(tensor, tf.int32) if isinstance(tensor, tf.Tensor) and tensor.dtype.is_integer else tensor | |
for key, tensor in prepared_for_class.items() | |
} | |
model(**int32_prepared_for_class) # No assertion, we're just checking this doesn't throw an error | |
# After testing that the model accepts all int inputs, confirm that its dummies are int32 | |
for key, tensor in model.dummy_inputs.items(): | |
self.assertTrue( | |
isinstance(tensor, tf.Tensor) or tf.keras.backend.is_keras_tensor(tensor), | |
"Dummy inputs should be tf.Tensor!", | |
) | |
if tensor.dtype.is_integer: | |
self.assertTrue(tensor.dtype == tf.int32, "Integer dummy inputs should be tf.int32!") | |
# Also confirm that the input_signature uses int32 | |
for key, tensor_spec in model.input_signature.items(): | |
if tensor_spec.dtype.is_integer: | |
self.assertTrue(tensor_spec.dtype == tf.int32, "Input signatures should use tf.int32 for ints!") | |
def test_generate_with_headmasking(self): | |
attention_names = ["encoder_attentions", "decoder_attentions", "cross_attentions"] | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_generative_model_classes: | |
model = model_class(config) | |
# We want to test only encoder-decoder models | |
if not config.is_encoder_decoder: | |
continue | |
head_masking = { | |
"head_mask": tf.zeros((config.encoder_layers, config.encoder_attention_heads)), | |
"decoder_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)), | |
"cross_attn_head_mask": tf.zeros((config.decoder_layers, config.decoder_attention_heads)), | |
} | |
signature = inspect.signature(model.call) | |
if set(head_masking.keys()) < {*signature.parameters.keys()}: | |
continue | |
for attn_name, (name, mask) in zip(attention_names, head_masking.items()): | |
out = model.generate( | |
inputs_dict["input_ids"], | |
num_beams=1, | |
max_length=inputs_dict["input_ids"] + 5, | |
output_attentions=True, | |
return_dict_in_generate=True, | |
**{name: mask}, | |
) | |
# We check the state of decoder_attentions and cross_attentions just from the last step | |
attn_weights = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] | |
self.assertEqual(sum([tf.reduce_sum(w).numpy() for w in attn_weights]), 0.0) | |
def test_load_with_mismatched_shapes(self): | |
if not self.test_mismatched_shapes: | |
return | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
if model_class not in get_values(TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING): | |
continue | |
with self.subTest(msg=f"Testing {model_class}"): | |
with tempfile.TemporaryDirectory() as tmp_dir: | |
model = model_class(config) | |
inputs = self._prepare_for_class(inputs_dict, model_class) | |
_ = model(**inputs) | |
model.save_pretrained(tmp_dir) | |
# Fails when we don't set ignore_mismatched_sizes=True | |
with self.assertRaises(ValueError): | |
new_model = TFAutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42) | |
with self.assertRaises(ValueError): | |
new_model_without_prefix = TFAutoModel.from_pretrained(tmp_dir, vocab_size=10) | |
logger = logging.get_logger("transformers.modeling_tf_utils") | |
with CaptureLogger(logger) as cl: | |
new_model = TFAutoModelForSequenceClassification.from_pretrained( | |
tmp_dir, num_labels=42, ignore_mismatched_sizes=True | |
) | |
self.assertIn("the shapes did not match", cl.out) | |
logits = new_model(**inputs).logits | |
self.assertEqual(logits.shape[1], 42) | |
with CaptureLogger(logger) as cl: | |
new_model_without_prefix = TFAutoModel.from_pretrained( | |
tmp_dir, vocab_size=10, ignore_mismatched_sizes=True | |
) | |
self.assertIn("the shapes did not match", cl.out) | |
# Although Tf models always have a prefix pointing to `MainLayer`, | |
# we still add this "without prefix" test to keep a consistency between tf and pt tests. | |
input_ids = ids_tensor((2, 8), 10) | |
if self.is_encoder_decoder: | |
new_model_without_prefix(input_ids, decoder_input_ids=input_ids) | |
else: | |
new_model_without_prefix(input_ids) | |
def test_model_main_input_name(self): | |
for model_class in self.all_model_classes: | |
model_signature = inspect.signature(getattr(model_class, "call")) | |
# The main input is the name of the argument after `self` | |
observed_main_input_name = list(model_signature.parameters.keys())[1] | |
self.assertEqual(model_class.main_input_name, observed_main_input_name) | |
def test_dataset_conversion(self): | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
for model_class in self.all_model_classes: | |
model = model_class(config) | |
tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class, return_labels=False) | |
if "labels" in tf_inputs_dict: | |
return # This is some kinda funky decoder model that needs labels in its forward pass | |
tf_inputs_dict = { | |
key: val | |
for key, val in tf_inputs_dict.items() | |
if "head_mask" not in key and isinstance(val, tf.Tensor) | |
} | |
tf_inputs_dict["extra_unwanted_column"] = list(tf_inputs_dict.values())[0] # Use a random other tensor | |
input_dataset = Dataset.from_dict(tf_inputs_dict) | |
tf_dataset = model.prepare_tf_dataset( | |
input_dataset, batch_size=len(input_dataset), drop_remainder=False, shuffle=False | |
) | |
test_batch = next(iter(tf_dataset)) | |
if isinstance(test_batch, tf.Tensor): | |
self.assertEqual(len(test_batch), len(input_dataset)) # Assert we didn't lose any data | |
elif isinstance(test_batch, dict): | |
# Assert we discarded the unwanted extra column but kept everything else | |
self.assertEqual(len(test_batch), len(input_dataset.features) - 1) | |
self.assertNotIn("extra_unwanted_column", test_batch) | |
for tensor in test_batch.values(): | |
self.assertTrue(isinstance(tensor, tf.Tensor)) | |
self.assertEqual(len(tensor), len(input_dataset)) # Assert we didn't lose any data | |
model(test_batch, training=False) | |
if "labels" in inspect.signature(model_class.call).parameters.keys(): | |
tf_inputs_dict = self._prepare_for_class(inputs_dict, model_class, return_labels=True) | |
if "labels" not in tf_inputs_dict: | |
return # This model isn't giving us labels after all, don't try training with it | |
tf_inputs_dict = {key: val for key, val in tf_inputs_dict.items() if "head_mask" not in key} | |
tf_inputs_dict["extra_unwanted_column"] = list(tf_inputs_dict.values())[0] # Use a random other tensor | |
input_dataset = Dataset.from_dict(tf_inputs_dict) | |
tf_dataset = model.prepare_tf_dataset( | |
input_dataset, batch_size=len(input_dataset), drop_remainder=False, shuffle=False | |
) | |
test_batch, test_batch_labels = next(iter(tf_dataset)) | |
self.assertGreater(len(test_batch_labels), 0) # Assert the labels are present | |
feature_columns = 1 if isinstance(test_batch, tf.Tensor) else len(test_batch) | |
label_columns = 1 if isinstance(test_batch_labels, tf.Tensor) else len(test_batch_labels) | |
# Assert we discarded the unwanted extra column but kept everything else | |
self.assertEqual(feature_columns + label_columns, len(input_dataset.features) - 1) | |
if isinstance(test_batch, dict): | |
self.assertNotIn("extra_unwanted_column", test_batch) | |
if isinstance(test_batch_labels, dict): | |
self.assertNotIn("extra_unwanted_column", test_batch_labels) | |
model.compile(optimizer="sgd", run_eagerly=True) | |
model.train_on_batch(test_batch, test_batch_labels) | |
def _test_xla_generate(self, **generate_kwargs): | |
def _generate_and_check_results(model, inputs_dict): | |
if "input_ids" in inputs_dict: | |
inputs = inputs_dict["input_ids"] | |
# make sure there are no pad tokens in prompt, which may trigger unwanted behavior | |
if model.generation_config.pad_token_id is not None: | |
if config.pad_token_id == 0: | |
new_pad_token = model.generation_config.pad_token_id + 1 | |
else: | |
new_pad_token = model.generation_config.pad_token_id - 1 | |
else: | |
new_pad_token = None | |
inputs = tf.where(inputs != model.generation_config.pad_token_id, inputs, new_pad_token) | |
elif "input_features" in inputs_dict: | |
inputs = inputs_dict["input_features"] | |
else: | |
raise ValueError("No valid generate input found in inputs_dict") | |
generated = model.generate(inputs, **generate_kwargs).numpy() | |
generate_xla = tf.function(model.generate, jit_compile=True) | |
generated_xla = generate_xla(inputs, **generate_kwargs).numpy() | |
# Due to numerical instability, let's fail the test only if there are more than 10% of input sequences give | |
# different outputs between XLA and non-XLA versions. If there are less than 10 examples, let's be strict | |
# and not allow any difference. | |
diff = [[], []] | |
for _generated, _generated_xla in zip(generated.tolist(), generated_xla.tolist()): | |
if _generated != _generated_xla: | |
diff[0].append(_generated) | |
diff[1].append(_generated_xla) | |
ratio = len(diff[0]) / len(generated) | |
if ratio > 0.1 or (len(diff[0]) > 0 and len(generated) < 10): | |
self.assertListEqual(diff[0], diff[1]) | |
for model_class in self.all_generative_model_classes: | |
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common() | |
config.eos_token_id = None # Generate until max length | |
config.do_sample = False | |
# fix config for models with additional sequence-length limiting settings | |
for var_name in ["max_position_embeddings", "max_target_positions"]: | |
attr = getattr(config, var_name, None) | |
if attr is not None and attr < generate_kwargs["max_new_tokens"]: | |
try: | |
setattr(config, var_name, generate_kwargs["max_new_tokens"]) | |
except NotImplementedError: | |
# xlnet will raise an exception when trying to set | |
# max_position_embeddings. | |
pass | |
model = model_class(config) | |
if model.supports_xla_generation: | |
_generate_and_check_results(model, inputs_dict) | |
else: | |
with self.assertRaises(ValueError): | |
_generate_and_check_results(model, inputs_dict) | |
def test_xla_generate_fast(self): | |
""" | |
Basic quick test for generate-compatible classes that confirms that XLA-generated tokens are the same as their | |
non XLA counterparts. | |
Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception | |
""" | |
self._test_xla_generate(num_beams=1, num_return_sequences=1, max_new_tokens=3) | |
def test_xla_generate_contrastive(self): | |
""" | |
Slow and challenging version of `test_xla_generate_fast` for contrastive search -- contrastive search directly | |
manipulates the model cache and other outputs, and this test ensures that they are in a valid format that is | |
also supported by XLA. | |
Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception | |
""" | |
self._test_xla_generate(num_beams=1, num_return_sequences=1, max_new_tokens=16, penalty_alpha=0.5, top_k=4) | |
def test_xla_generate_slow(self): | |
""" | |
Slow and challenging version of `test_xla_generate_fast` -- this test asks for several long sequences using | |
beam search, with and without XLA. The two outputs should match, and a failure in this test indicates that the | |
model may need further analysis if it is to be used for XLA generation. | |
Either the model supports XLA generation and passes the inner test, or it raises an appropriate exception | |
""" | |
self._test_xla_generate(num_beams=8, num_return_sequences=2, max_new_tokens=128) | |
def _generate_random_bad_tokens(self, num_bad_tokens, model): | |
# special tokens cannot be bad tokens | |
special_tokens = [] | |
if model.config.bos_token_id is not None: | |
special_tokens.append(model.config.bos_token_id) | |
if model.config.pad_token_id is not None: | |
special_tokens.append(model.config.pad_token_id) | |
if model.config.eos_token_id is not None: | |
special_tokens.append(model.config.eos_token_id) | |
# create random bad tokens that are not special tokens | |
bad_tokens = [] | |
while len(bad_tokens) < num_bad_tokens: | |
token = tf.squeeze(ids_tensor((1, 1), self.model_tester.vocab_size), 0).numpy()[0] | |
if token not in special_tokens: | |
bad_tokens.append(token) | |
return bad_tokens | |
def _check_generated_ids(self, output_ids): | |
for token_id in output_ids[0].numpy().tolist(): | |
self.assertGreaterEqual(token_id, 0) | |
self.assertLess(token_id, self.model_tester.vocab_size) | |
def _check_match_tokens(self, generated_ids, bad_words_ids): | |
# for all bad word tokens | |
for bad_word_ids in bad_words_ids: | |
# for all slices in batch | |
for generated_ids_slice in generated_ids: | |
# for all word idx | |
for i in range(len(bad_word_ids), len(generated_ids_slice)): | |
# if tokens match | |
if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids: | |
return True | |
return False | |
def ids_tensor(shape, vocab_size, rng=None, name=None, dtype=None): | |
"""Creates a random int32 tensor of the shape within the vocab size.""" | |
if rng is None: | |
rng = random.Random() | |
total_dims = 1 | |
for dim in shape: | |
total_dims *= dim | |
values = [] | |
for _ in range(total_dims): | |
values.append(rng.randint(0, vocab_size - 1)) | |
output = tf.constant(values, shape=shape, dtype=dtype if dtype is not None else tf.int32) | |
return output | |
def random_attention_mask(shape, rng=None, name=None, dtype=None): | |
attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None, dtype=dtype) | |
# make sure that at least one token is attended to for each batch | |
attn_mask = tf.concat([attn_mask[:, :-1], tf.ones_like(attn_mask[:, -1:], dtype=dtype)], axis=-1) | |
return attn_mask | |
def floats_tensor(shape, scale=1.0, rng=None, name=None, dtype=None): | |
"""Creates a random float32 tensor""" | |
if rng is None: | |
rng = random.Random() | |
total_dims = 1 | |
for dim in shape: | |
total_dims *= dim | |
values = [] | |
for _ in range(total_dims): | |
values.append(rng.random() * scale) | |
return tf.reshape(tf.constant(values, dtype=dtype if dtype is not None else tf.float32), shape=shape) | |