Spaces:
Paused
Paused
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import pytest | |
from transformers import ( | |
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, | |
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, | |
MBart50TokenizerFast, | |
MBartConfig, | |
MBartForConditionalGeneration, | |
TranslationPipeline, | |
pipeline, | |
) | |
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch, slow | |
from .test_pipelines_common import ANY | |
class TranslationPipelineTests(unittest.TestCase): | |
model_mapping = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING | |
tf_model_mapping = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING | |
def get_test_pipeline(self, model, tokenizer, processor): | |
if isinstance(model.config, MBartConfig): | |
src_lang, tgt_lang = list(tokenizer.lang_code_to_id.keys())[:2] | |
translator = TranslationPipeline(model=model, tokenizer=tokenizer, src_lang=src_lang, tgt_lang=tgt_lang) | |
else: | |
translator = TranslationPipeline(model=model, tokenizer=tokenizer) | |
return translator, ["Some string", "Some other text"] | |
def run_pipeline_test(self, translator, _): | |
outputs = translator("Some string") | |
self.assertEqual(outputs, [{"translation_text": ANY(str)}]) | |
outputs = translator(["Some string"]) | |
self.assertEqual(outputs, [{"translation_text": ANY(str)}]) | |
outputs = translator(["Some string", "other string"]) | |
self.assertEqual(outputs, [{"translation_text": ANY(str)}, {"translation_text": ANY(str)}]) | |
def test_small_model_pt(self): | |
translator = pipeline("translation_en_to_ro", model="patrickvonplaten/t5-tiny-random", framework="pt") | |
outputs = translator("This is a test string", max_length=20) | |
self.assertEqual( | |
outputs, | |
[ | |
{ | |
"translation_text": ( | |
"Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide" | |
" Beide Beide" | |
) | |
} | |
], | |
) | |
def test_small_model_tf(self): | |
translator = pipeline("translation_en_to_ro", model="patrickvonplaten/t5-tiny-random", framework="tf") | |
outputs = translator("This is a test string", max_length=20) | |
self.assertEqual( | |
outputs, | |
[ | |
{ | |
"translation_text": ( | |
"Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide Beide" | |
" Beide Beide" | |
) | |
} | |
], | |
) | |
def test_en_to_de_pt(self): | |
translator = pipeline("translation_en_to_de", model="patrickvonplaten/t5-tiny-random", framework="pt") | |
outputs = translator("This is a test string", max_length=20) | |
self.assertEqual( | |
outputs, | |
[ | |
{ | |
"translation_text": ( | |
"monoton monoton monoton monoton monoton monoton monoton monoton monoton monoton urine urine" | |
" urine urine urine urine urine urine urine" | |
) | |
} | |
], | |
) | |
def test_en_to_de_tf(self): | |
translator = pipeline("translation_en_to_de", model="patrickvonplaten/t5-tiny-random", framework="tf") | |
outputs = translator("This is a test string", max_length=20) | |
self.assertEqual( | |
outputs, | |
[ | |
{ | |
"translation_text": ( | |
"monoton monoton monoton monoton monoton monoton monoton monoton monoton monoton urine urine" | |
" urine urine urine urine urine urine urine" | |
) | |
} | |
], | |
) | |
class TranslationNewFormatPipelineTests(unittest.TestCase): | |
def test_default_translations(self): | |
# We don't provide a default for this pair | |
with self.assertRaises(ValueError): | |
pipeline(task="translation_cn_to_ar") | |
# but we do for this one | |
translator = pipeline(task="translation_en_to_de") | |
self.assertEqual(translator._preprocess_params["src_lang"], "en") | |
self.assertEqual(translator._preprocess_params["tgt_lang"], "de") | |
def test_multilingual_translation(self): | |
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") | |
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt") | |
translator = pipeline(task="translation", model=model, tokenizer=tokenizer) | |
# Missing src_lang, tgt_lang | |
with self.assertRaises(ValueError): | |
translator("This is a test") | |
outputs = translator("This is a test", src_lang="en_XX", tgt_lang="ar_AR") | |
self.assertEqual(outputs, [{"translation_text": "هذا إختبار"}]) | |
outputs = translator("This is a test", src_lang="en_XX", tgt_lang="hi_IN") | |
self.assertEqual(outputs, [{"translation_text": "यह एक परीक्षण है"}]) | |
# src_lang, tgt_lang can be defined at pipeline call time | |
translator = pipeline(task="translation", model=model, tokenizer=tokenizer, src_lang="en_XX", tgt_lang="ar_AR") | |
outputs = translator("This is a test") | |
self.assertEqual(outputs, [{"translation_text": "هذا إختبار"}]) | |
def test_translation_on_odd_language(self): | |
model = "patrickvonplaten/t5-tiny-random" | |
translator = pipeline(task="translation_cn_to_ar", model=model) | |
self.assertEqual(translator._preprocess_params["src_lang"], "cn") | |
self.assertEqual(translator._preprocess_params["tgt_lang"], "ar") | |
def test_translation_default_language_selection(self): | |
model = "patrickvonplaten/t5-tiny-random" | |
with pytest.warns(UserWarning, match=r".*translation_en_to_de.*"): | |
translator = pipeline(task="translation", model=model) | |
self.assertEqual(translator.task, "translation_en_to_de") | |
self.assertEqual(translator._preprocess_params["src_lang"], "en") | |
self.assertEqual(translator._preprocess_params["tgt_lang"], "de") | |
def test_translation_with_no_language_no_model_fails(self): | |
with self.assertRaises(ValueError): | |
pipeline(task="translation") | |