Spaces:
Paused
Paused
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import tempfile | |
import unittest | |
from transformers import is_torch_available | |
from transformers.testing_utils import require_torch | |
if is_torch_available(): | |
import torch | |
from torch import nn | |
from transformers import ( | |
Adafactor, | |
AdamW, | |
get_constant_schedule, | |
get_constant_schedule_with_warmup, | |
get_cosine_schedule_with_warmup, | |
get_cosine_with_hard_restarts_schedule_with_warmup, | |
get_inverse_sqrt_schedule, | |
get_linear_schedule_with_warmup, | |
get_polynomial_decay_schedule_with_warmup, | |
) | |
def unwrap_schedule(scheduler, num_steps=10): | |
lrs = [] | |
for _ in range(num_steps): | |
lrs.append(scheduler.get_lr()[0]) | |
scheduler.step() | |
return lrs | |
def unwrap_and_save_reload_schedule(scheduler, num_steps=10): | |
lrs = [] | |
for step in range(num_steps): | |
lrs.append(scheduler.get_lr()[0]) | |
scheduler.step() | |
if step == num_steps // 2: | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
file_name = os.path.join(tmpdirname, "schedule.bin") | |
torch.save(scheduler.state_dict(), file_name) | |
state_dict = torch.load(file_name) | |
scheduler.load_state_dict(state_dict) | |
return lrs | |
class OptimizationTest(unittest.TestCase): | |
def assertListAlmostEqual(self, list1, list2, tol): | |
self.assertEqual(len(list1), len(list2)) | |
for a, b in zip(list1, list2): | |
self.assertAlmostEqual(a, b, delta=tol) | |
def test_adam_w(self): | |
w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True) | |
target = torch.tensor([0.4, 0.2, -0.5]) | |
criterion = nn.MSELoss() | |
# No warmup, constant schedule, no gradient clipping | |
optimizer = AdamW(params=[w], lr=2e-1, weight_decay=0.0) | |
for _ in range(100): | |
loss = criterion(w, target) | |
loss.backward() | |
optimizer.step() | |
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. | |
w.grad.zero_() | |
self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2) | |
def test_adafactor(self): | |
w = torch.tensor([0.1, -0.2, -0.1], requires_grad=True) | |
target = torch.tensor([0.4, 0.2, -0.5]) | |
criterion = nn.MSELoss() | |
# No warmup, constant schedule, no gradient clipping | |
optimizer = Adafactor( | |
params=[w], | |
lr=1e-2, | |
eps=(1e-30, 1e-3), | |
clip_threshold=1.0, | |
decay_rate=-0.8, | |
beta1=None, | |
weight_decay=0.0, | |
relative_step=False, | |
scale_parameter=False, | |
warmup_init=False, | |
) | |
for _ in range(1000): | |
loss = criterion(w, target) | |
loss.backward() | |
optimizer.step() | |
w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. | |
w.grad.zero_() | |
self.assertListAlmostEqual(w.tolist(), [0.4, 0.2, -0.5], tol=1e-2) | |
class ScheduleInitTest(unittest.TestCase): | |
m = nn.Linear(50, 50) if is_torch_available() else None | |
optimizer = AdamW(m.parameters(), lr=10.0) if is_torch_available() else None | |
num_steps = 10 | |
def assertListAlmostEqual(self, list1, list2, tol, msg=None): | |
self.assertEqual(len(list1), len(list2)) | |
for a, b in zip(list1, list2): | |
self.assertAlmostEqual(a, b, delta=tol, msg=msg) | |
def test_schedulers(self): | |
common_kwargs = {"num_warmup_steps": 2, "num_training_steps": 10} | |
# schedulers doct format | |
# function: (sched_args_dict, expected_learning_rates) | |
scheds = { | |
get_constant_schedule: ({}, [10.0] * self.num_steps), | |
get_constant_schedule_with_warmup: ( | |
{"num_warmup_steps": 4}, | |
[0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], | |
), | |
get_linear_schedule_with_warmup: ( | |
{**common_kwargs}, | |
[0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], | |
), | |
get_cosine_schedule_with_warmup: ( | |
{**common_kwargs}, | |
[0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], | |
), | |
get_cosine_with_hard_restarts_schedule_with_warmup: ( | |
{**common_kwargs, "num_cycles": 2}, | |
[0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], | |
), | |
get_polynomial_decay_schedule_with_warmup: ( | |
{**common_kwargs, "power": 2.0, "lr_end": 1e-7}, | |
[0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], | |
), | |
get_inverse_sqrt_schedule: ( | |
{"num_warmup_steps": 2}, | |
[0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], | |
), | |
} | |
for scheduler_func, data in scheds.items(): | |
kwargs, expected_learning_rates = data | |
scheduler = scheduler_func(self.optimizer, **kwargs) | |
self.assertEqual(len([scheduler.get_lr()[0]]), 1) | |
lrs_1 = unwrap_schedule(scheduler, self.num_steps) | |
self.assertListAlmostEqual( | |
lrs_1, | |
expected_learning_rates, | |
tol=1e-2, | |
msg=f"failed for {scheduler_func} in normal scheduler", | |
) | |
scheduler = scheduler_func(self.optimizer, **kwargs) | |
if scheduler_func.__name__ != "get_constant_schedule": | |
LambdaScheduleWrapper.wrap_scheduler(scheduler) # wrap to test picklability of the schedule | |
lrs_2 = unwrap_and_save_reload_schedule(scheduler, self.num_steps) | |
self.assertListEqual(lrs_1, lrs_2, msg=f"failed for {scheduler_func} in save and reload") | |
class LambdaScheduleWrapper: | |
"""See https://github.com/huggingface/transformers/issues/21689""" | |
def __init__(self, fn): | |
self.fn = fn | |
def __call__(self, *args, **kwargs): | |
return self.fn(*args, **kwargs) | |
def wrap_scheduler(self, scheduler): | |
scheduler.lr_lambdas = list(map(self, scheduler.lr_lambdas)) | |