Spaces:
Paused
Paused
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Team Inc. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a clone of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
from queue import Empty | |
from threading import Thread | |
from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available | |
from transformers.testing_utils import CaptureStdout, require_torch, torch_device | |
from ..test_modeling_common import ids_tensor | |
if is_torch_available(): | |
import torch | |
from transformers import AutoModelForCausalLM | |
class StreamerTester(unittest.TestCase): | |
def test_text_streamer_matches_non_streaming(self): | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") | |
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) | |
model.config.eos_token_id = -1 | |
input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device) | |
greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False) | |
greedy_text = tokenizer.decode(greedy_ids[0]) | |
with CaptureStdout() as cs: | |
streamer = TextStreamer(tokenizer) | |
model.generate(input_ids, max_new_tokens=10, do_sample=False, streamer=streamer) | |
# The greedy text should be printed to stdout, except for the final "\n" in the streamer | |
streamer_text = cs.out[:-1] | |
self.assertEqual(streamer_text, greedy_text) | |
def test_iterator_streamer_matches_non_streaming(self): | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") | |
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) | |
model.config.eos_token_id = -1 | |
input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device) | |
greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False) | |
greedy_text = tokenizer.decode(greedy_ids[0]) | |
streamer = TextIteratorStreamer(tokenizer) | |
generation_kwargs = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
streamer_text = "" | |
for new_text in streamer: | |
streamer_text += new_text | |
self.assertEqual(streamer_text, greedy_text) | |
def test_text_streamer_skip_prompt(self): | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") | |
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) | |
model.config.eos_token_id = -1 | |
input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device) | |
greedy_ids = model.generate(input_ids, max_new_tokens=10, do_sample=False) | |
new_greedy_ids = greedy_ids[:, input_ids.shape[1] :] | |
new_greedy_text = tokenizer.decode(new_greedy_ids[0]) | |
with CaptureStdout() as cs: | |
streamer = TextStreamer(tokenizer, skip_prompt=True) | |
model.generate(input_ids, max_new_tokens=10, do_sample=False, streamer=streamer) | |
# The greedy text should be printed to stdout, except for the final "\n" in the streamer | |
streamer_text = cs.out[:-1] | |
self.assertEqual(streamer_text, new_greedy_text) | |
def test_text_streamer_decode_kwargs(self): | |
# Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested | |
# with actual models -- the dummy models' tokenizers are not aligned with their models, and | |
# `skip_special_tokens=True` has no effect on them | |
tokenizer = AutoTokenizer.from_pretrained("distilgpt2") | |
model = AutoModelForCausalLM.from_pretrained("distilgpt2").to(torch_device) | |
model.config.eos_token_id = -1 | |
input_ids = torch.ones((1, 5), device=torch_device).long() * model.config.bos_token_id | |
with CaptureStdout() as cs: | |
streamer = TextStreamer(tokenizer, skip_special_tokens=True) | |
model.generate(input_ids, max_new_tokens=1, do_sample=False, streamer=streamer) | |
# The prompt contains a special token, so the streamer should not print it. As such, the output text, when | |
# re-tokenized, must only contain one token | |
streamer_text = cs.out[:-1] # Remove the final "\n" | |
streamer_text_tokenized = tokenizer(streamer_text, return_tensors="pt") | |
self.assertEqual(streamer_text_tokenized.input_ids.shape, (1, 1)) | |
def test_iterator_streamer_timeout(self): | |
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2") | |
model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-gpt2").to(torch_device) | |
model.config.eos_token_id = -1 | |
input_ids = ids_tensor((1, 5), vocab_size=model.config.vocab_size).to(torch_device) | |
streamer = TextIteratorStreamer(tokenizer, timeout=0.001) | |
generation_kwargs = {"input_ids": input_ids, "max_new_tokens": 10, "do_sample": False, "streamer": streamer} | |
thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
thread.start() | |
# The streamer will timeout after 0.001 seconds, so an exception will be raised | |
with self.assertRaises(Empty): | |
streamer_text = "" | |
for new_text in streamer: | |
streamer_text += new_text | |