Spaces:
Paused
Paused
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
import os | |
import re | |
import sys | |
import unittest | |
from pathlib import Path | |
from typing import Tuple | |
from unittest.mock import patch | |
from parameterized import parameterized | |
from transformers.testing_utils import ( | |
CaptureStderr, | |
ExtendSysPath, | |
TestCasePlus, | |
execute_subprocess_async, | |
get_gpu_count, | |
get_torch_dist_unique_port, | |
require_apex, | |
require_bitsandbytes, | |
require_fairscale, | |
require_torch, | |
require_torch_gpu, | |
require_torch_multi_gpu, | |
require_torch_non_multi_gpu, | |
slow, | |
) | |
from transformers.trainer_callback import TrainerState | |
from transformers.trainer_utils import set_seed | |
bindir = os.path.abspath(os.path.dirname(__file__)) | |
with ExtendSysPath(f"{bindir}/../../examples/pytorch/translation"): | |
from run_translation import main # noqa | |
set_seed(42) | |
MARIAN_MODEL = "sshleifer/student_marian_en_ro_6_1" | |
MBART_TINY = "sshleifer/tiny-mbart" | |
class TestTrainerExt(TestCasePlus): | |
def run_seq2seq_quick( | |
self, | |
distributed=False, | |
extra_args_str=None, | |
predict_with_generate=True, | |
do_train=True, | |
do_eval=True, | |
do_predict=True, | |
): | |
output_dir = self.run_trainer( | |
eval_steps=1, | |
max_len=12, | |
model_name=MBART_TINY, | |
num_train_epochs=1, | |
distributed=distributed, | |
extra_args_str=extra_args_str, | |
predict_with_generate=predict_with_generate, | |
do_train=do_train, | |
do_eval=do_eval, | |
do_predict=do_predict, | |
) | |
logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history | |
if not do_eval: | |
return | |
eval_metrics = [log for log in logs if "eval_loss" in log.keys()] | |
first_step_stats = eval_metrics[0] | |
if predict_with_generate: | |
assert "eval_bleu" in first_step_stats | |
last_step_stats = eval_metrics[-1] | |
assert isinstance(last_step_stats["eval_bleu"], float) | |
assert not math.isnan(float(last_step_stats["eval_loss"])), "eval_loss must not be `nan`" | |
def test_run_seq2seq_no_dist(self): | |
self.run_seq2seq_quick() | |
# verify that the trainer can handle non-distributed with n_gpu > 1 | |
def test_run_seq2seq_dp(self): | |
self.run_seq2seq_quick(distributed=False) | |
# verify that the trainer can handle distributed with n_gpu > 1 | |
def test_run_seq2seq_ddp(self): | |
self.run_seq2seq_quick(distributed=True) | |
# test --sharded_ddp w/o --fp16 | |
def test_run_seq2seq_sharded_ddp(self): | |
self.run_seq2seq_quick(distributed=True, extra_args_str="--sharded_ddp simple") | |
# test --sharded_ddp w/ --fp16 | |
def test_run_seq2seq_sharded_ddp_fp16(self): | |
self.run_seq2seq_quick(distributed=True, extra_args_str="--sharded_ddp simple --fp16") | |
# test --sharded_ddp zero_dp_2 w/o --fp16 | |
def test_run_seq2seq_fully_sharded_ddp(self): | |
self.run_seq2seq_quick(distributed=True, extra_args_str="--sharded_ddp zero_dp_2", predict_with_generate=False) | |
# test --sharded_ddp zero_dp_2 w/ --fp16 | |
def test_run_seq2seq_fully_sharded_ddp_fp16(self): | |
self.run_seq2seq_quick( | |
distributed=True, extra_args_str="--sharded_ddp zero_dp_2 --fp16", predict_with_generate=False | |
) | |
def test_run_seq2seq_apex(self): | |
# XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same | |
# program and it breaks other tests that run from the same pytest worker, therefore until this is | |
# sorted out it must be run only in an external program, that is distributed=True in this | |
# test and only under one or more gpus - if we want cpu will need to make a special test | |
# | |
# specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via | |
# 2nd main() call it botches the future eval. | |
# | |
self.run_seq2seq_quick(distributed=True, extra_args_str="--fp16 --fp16_backend=apex") | |
# test 2nd time - was getting eval_loss': nan' | |
# to reproduce the problem set distributed=False | |
self.run_seq2seq_quick(distributed=True, extra_args_str="--fp16 --fp16_backend=apex") | |
def test_trainer_log_level_replica(self, experiment_id): | |
# as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout | |
experiments = { | |
# test with the default log_level - should be info and thus log info once | |
"base": {"extra_args_str": "", "n_matches": 1}, | |
# test with low log_level and log_level_replica - should be noisy on all processes | |
# now the info string should appear twice on 2 processes | |
"low": {"extra_args_str": "--log_level debug --log_level_replica debug", "n_matches": 2}, | |
# test with high log_level and low log_level_replica | |
# now the info string should appear once only on the replica | |
"high": {"extra_args_str": "--log_level error --log_level_replica debug", "n_matches": 1}, | |
# test with high log_level and log_level_replica - should be quiet on all processes | |
"mixed": {"extra_args_str": "--log_level error --log_level_replica error", "n_matches": 0}, | |
} | |
data = experiments[experiment_id] | |
kwargs = {"distributed": True, "predict_with_generate": False, "do_eval": False, "do_predict": False} | |
log_info_string = "Running training" | |
with CaptureStderr() as cl: | |
self.run_seq2seq_quick(**kwargs, extra_args_str=data["extra_args_str"]) | |
n_matches = len(re.findall(log_info_string, cl.err)) | |
self.assertEqual(n_matches, data["n_matches"]) | |
def test_run_seq2seq(self): | |
output_dir = self.run_trainer( | |
eval_steps=2, | |
max_len=128, | |
model_name=MARIAN_MODEL, | |
learning_rate=3e-4, | |
num_train_epochs=10, | |
distributed=False, | |
) | |
# Check metrics | |
logs = TrainerState.load_from_json(os.path.join(output_dir, "trainer_state.json")).log_history | |
eval_metrics = [log for log in logs if "eval_loss" in log.keys()] | |
first_step_stats = eval_metrics[0] | |
last_step_stats = eval_metrics[-1] | |
assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" | |
assert isinstance(last_step_stats["eval_bleu"], float) | |
# test if do_predict saves generations and metrics | |
contents = os.listdir(output_dir) | |
contents = {os.path.basename(p) for p in contents} | |
assert "generated_predictions.txt" in contents | |
assert "predict_results.json" in contents | |
def test_run_seq2seq_bnb(self): | |
from transformers.training_args import OptimizerNames | |
def train_and_return_metrics(optim: str) -> Tuple[int, float]: | |
extra_args = "--skip_memory_metrics 0" | |
output_dir = self.run_trainer( | |
max_len=128, | |
model_name=MARIAN_MODEL, | |
learning_rate=3e-4, | |
num_train_epochs=1, | |
optim=optim, | |
distributed=True, # force run in a new process | |
extra_args_str=extra_args, | |
do_eval=False, | |
do_predict=False, | |
n_gpus_to_use=1, # to allow deterministic fixed memory usage | |
) | |
# Check metrics | |
logs = TrainerState.load_from_json(Path(output_dir, "trainer_state.json")).log_history | |
gpu_peak_mem_mb = int(logs[0]["train_mem_gpu_peaked_delta"] / 2**20) | |
gpu_alloc_mem_mb = int(logs[0]["train_mem_gpu_alloc_delta"] / 2**20) | |
loss = logs[0]["train_loss"] | |
return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss | |
gpu_peak_mem_orig, gpu_alloc_mem_orig, loss_orig = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value) | |
gpu_peak_mem_bnb, gpu_alloc_mem_bnb, loss_bnb = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value) | |
gpu_alloc_mem_diff = gpu_alloc_mem_orig - gpu_alloc_mem_bnb | |
gpu_total_mem_orig = gpu_peak_mem_orig + gpu_alloc_mem_orig | |
gpu_total_mem_bnb = gpu_peak_mem_bnb + gpu_alloc_mem_bnb | |
gpu_total_mem_diff = gpu_total_mem_orig - gpu_total_mem_bnb | |
# sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which | |
# doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized | |
# in 2 bytes and the diff in optim memory usage is derived as so: | |
# | |
# - normal 25*8=~200MB (8 bytes per param) | |
# - bnb 25*2= ~50MB (2 bytes per param) | |
# | |
# Thus we should expect ~150MB total memory saved. | |
# | |
# Peak memory should be the same - the total should be different by about that same margin | |
# | |
# After leaving a small margin to accommodate for differences between gpus let's check | |
# that we have at least 120MB in savings | |
expected_savings = 120 | |
# uncomment the following if this test starts failing - requires py38 for a new print feature | |
# gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb | |
# print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") | |
# print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") | |
# print(f"{gpu_alloc_mem_diff=}MB") | |
# print(f"{gpu_peak_mem_diff=}MB") | |
# print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") | |
# print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") | |
self.assertGreater( | |
gpu_alloc_mem_diff, | |
expected_savings, | |
"should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got" | |
f" a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and" | |
f" gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB", | |
) | |
self.assertGreater( | |
gpu_total_mem_diff, | |
expected_savings, | |
"should use ~150MB less total gpu memory with BNB, compared to without it for this model but got" | |
f" a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and" | |
f" gpu_total_mem_bnb={gpu_total_mem_bnb}MB", | |
) | |
self.assertEqual( | |
loss_orig, loss_bnb, f"loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}" | |
) | |
def run_trainer( | |
self, | |
max_len: int, | |
model_name: str, | |
num_train_epochs: int, | |
learning_rate: float = 3e-3, | |
optim: str = "adafactor", | |
distributed: bool = False, | |
extra_args_str: str = None, | |
eval_steps: int = 0, | |
predict_with_generate: bool = True, | |
do_train: bool = True, | |
do_eval: bool = True, | |
do_predict: bool = True, | |
n_gpus_to_use: int = None, | |
): | |
data_dir = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro" | |
output_dir = self.get_auto_remove_tmp_dir() | |
args_train = f""" | |
--model_name_or_path {model_name} | |
--train_file {data_dir}/train.json | |
--validation_file {data_dir}/val.json | |
--test_file {data_dir}/test.json | |
--output_dir {output_dir} | |
--overwrite_output_dir | |
--max_train_samples 8 | |
--max_source_length {max_len} | |
--max_target_length {max_len} | |
--do_train | |
--num_train_epochs {str(num_train_epochs)} | |
--per_device_train_batch_size 4 | |
--learning_rate {learning_rate} | |
--warmup_steps 8 | |
--logging_steps 0 | |
--logging_strategy no | |
--save_steps {str(eval_steps)} | |
--group_by_length | |
--label_smoothing_factor 0.1 | |
--target_lang ro_RO | |
--source_lang en_XX | |
""".split() | |
args_eval = f""" | |
--do_eval | |
--per_device_eval_batch_size 4 | |
--max_eval_samples 8 | |
--val_max_target_length {max_len} | |
--evaluation_strategy steps | |
--eval_steps {str(eval_steps)} | |
""".split() | |
args_predict = """ | |
--do_predict | |
""".split() | |
args = [] | |
if do_train: | |
args += args_train | |
if do_eval: | |
args += args_eval | |
if do_predict: | |
args += args_predict | |
if predict_with_generate: | |
args += "--predict_with_generate".split() | |
if do_train: | |
if optim == "adafactor": | |
args += "--adafactor".split() | |
else: | |
args += f"--optim {optim}".split() | |
if extra_args_str is not None: | |
args += extra_args_str.split() | |
if distributed: | |
if n_gpus_to_use is None: | |
n_gpus_to_use = get_gpu_count() | |
master_port = get_torch_dist_unique_port() | |
distributed_args = f""" | |
-m torch.distributed.run | |
--nproc_per_node={n_gpus_to_use} | |
--master_port={master_port} | |
{self.examples_dir_str}/pytorch/translation/run_translation.py | |
""".split() | |
cmd = [sys.executable] + distributed_args + args | |
# keep for quick debug | |
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die | |
execute_subprocess_async(cmd, env=self.get_env()) | |
else: | |
testargs = ["run_translation.py"] + args | |
with patch.object(sys, "argv", testargs): | |
main() | |
return output_dir | |