Spaces:
Paused
Paused
#!/usr/bin/env python | |
import argparse | |
import gc | |
import os | |
import sys | |
from pathlib import Path | |
from typing import List # noqa: F401 | |
import pytorch_lightning as pl | |
import torch | |
from finetune import SummarizationModule, TranslationModule | |
from finetune import main as ft_main | |
from make_student import create_student_by_copying_alternating_layers, get_layers_to_supervise | |
from torch import nn | |
from transformers import AutoModelForSeq2SeqLM, MBartTokenizer, T5ForConditionalGeneration | |
from transformers.models.bart.modeling_bart import shift_tokens_right | |
from utils import calculate_bleu, check_output_dir, freeze_params, label_smoothed_nll_loss, use_task_specific_params | |
# need the parent dir module | |
sys.path.insert(2, str(Path(__file__).resolve().parents[1])) | |
from lightning_base import generic_train # noqa | |
class SummarizationDistiller(SummarizationModule): | |
"""Supports T5, Bart, Pegasus and other models that inherit from Bart.""" | |
loss_names = ["loss", "ce_loss", "mlm_loss", "hid_loss_enc", "hid_loss_dec"] | |
def __init__(self, hparams): | |
assert Path(hparams.data_dir).exists() | |
self.output_dir = Path(hparams.output_dir) | |
self.output_dir.mkdir(exist_ok=True) | |
save_dir = self.output_dir.joinpath("student") | |
hparams.model_name_or_path = str(save_dir) # Tell lightning we are training the student | |
teacher = AutoModelForSeq2SeqLM.from_pretrained(hparams.teacher).eval() | |
use_task_specific_params(teacher, hparams.task) # We copy good generation parameters to student by default | |
if hparams.student is not None: | |
student = AutoModelForSeq2SeqLM.from_pretrained(hparams.student) | |
use_task_specific_params(student, hparams.task) | |
e_layer_ids, d_layer_ids = None, None | |
else: | |
student, e_layer_ids, d_layer_ids = create_student_by_copying_alternating_layers( | |
teacher, e=hparams.student_encoder_layers, d=hparams.student_decoder_layers, save_path=save_dir | |
) | |
if hparams.length_penalty != -1: | |
student.config.length_penalty = hparams.length_penalty | |
hparams.tokenizer_name = hparams.teacher # Use teacher's tokenizer | |
super().__init__(hparams, model=student, config=student.config) | |
assert student.config.model_type == teacher.config.model_type, ( | |
f"teacher, student model types should be the same, got {student.config.model_type} !=" | |
f" {teacher.config.model_type}" | |
) | |
if student.config.model_type == "t5": | |
student_encoder_layers = len(student.get_encoder().block) | |
student_decoder_layers = len(student.get_decoder().block) | |
teacher_encoder_layers = len(teacher.get_encoder().block) | |
teacher_decoder_layers = len(teacher.get_decoder().block) | |
else: | |
student_encoder_layers = student.config.encoder_layers | |
student_decoder_layers = student.config.decoder_layers | |
teacher_encoder_layers = teacher.config.encoder_layers | |
teacher_decoder_layers = teacher.config.decoder_layers | |
self.different_base_models = not (hparams.student is None or hparams.teacher == hparams.student) | |
self.do_calc_hidden_loss = (not self.different_base_models) and hparams.alpha_hid > 0 | |
self.different_encoder = self.different_base_models or (student_encoder_layers != teacher_encoder_layers) | |
# self.different_encoder determines whether we need to run the teacher encoder | |
self.teacher = teacher | |
freeze_params(self.teacher) | |
if not self.different_encoder: # To save RAM, delete teacher encoder and freeze student encoder. | |
try: | |
del self.teacher.model.encoder | |
except AttributeError: # T5 | |
del self.teacher.encoder | |
if e_layer_ids is None: | |
e_layer_ids = list(range(student_encoder_layers)) | |
if d_layer_ids is None: | |
d_layer_ids = list(range(student_decoder_layers)) | |
self.e_layer_ids, self.d_layer_ids = e_layer_ids, d_layer_ids # type: List[int], List[int] | |
if self.do_calc_hidden_loss: # Intermediate supervision: Decide which layers to supervise | |
if hparams.supervise_forward: | |
self.e_matches = get_layers_to_supervise( | |
n_student=len(self.e_layer_ids), n_teacher=teacher_encoder_layers | |
) | |
self.d_matches = get_layers_to_supervise( | |
n_student=len(self.d_layer_ids), n_teacher=teacher_decoder_layers | |
) | |
else: # student layer should emulate hidden states of the teacher layer it was copied from | |
self.e_matches = self.e_layer_ids | |
self.d_matches = self.d_layer_ids | |
else: | |
self.e_matches = None | |
self.d_matches = None | |
self.ce_loss_fct = nn.KLDivLoss(reduction="batchmean") | |
self.temperature = 2.0 | |
self.alpha_mlm = hparams.alpha_mlm | |
self.alpha_ce = hparams.alpha_ce | |
self.alpha_hid = hparams.alpha_hid | |
gc.collect() | |
torch.cuda.empty_cache() | |
def calc_ce_loss(self, mask, s_logits, t_logits): | |
"""Copy pasted from distillbert (transformers/examples/distillation/)""" | |
# mask has False at padding_idx | |
sel_mask = mask[:, :, None].expand_as(s_logits) | |
vocab_size = s_logits.size(-1) | |
s_logits_slct = torch.masked_select(s_logits, sel_mask) # (bs * seq_length * voc_size) modulo the 1s in mask | |
t_logits_slct = torch.masked_select(t_logits, sel_mask) # (bs * seq_length * voc_size) modulo the 1s in mask | |
s_logits_slct = s_logits_slct.view(-1, vocab_size) # (bs * seq_length, voc_size) modulo the 1s in mask | |
t_logits_slct = t_logits_slct.view(-1, vocab_size) # (bs * seq_length, voc_size) modulo the 1s in mask | |
assert t_logits_slct.size() == s_logits_slct.size() | |
loss_ce = ( | |
self.ce_loss_fct( | |
nn.functional.log_softmax(s_logits_slct / self.temperature, dim=-1), | |
nn.functional.softmax(t_logits_slct / self.temperature, dim=-1), | |
) | |
* (self.temperature) ** 2 | |
) | |
return loss_ce | |
def add_model_specific_args(parser, root_dir): | |
SummarizationModule.add_model_specific_args(parser, root_dir) | |
add_distill_args(parser) | |
return parser | |
def _step(self, batch: dict) -> tuple: | |
"""Compute the loss for a batch""" | |
pad_token_id = self.tokenizer.pad_token_id | |
input_ids, src_mask, labels = batch["input_ids"], batch["attention_mask"], batch["labels"] | |
if isinstance(self.model, T5ForConditionalGeneration): | |
decoder_input_ids = self.model._shift_right(labels) | |
else: | |
decoder_input_ids = shift_tokens_right(labels, pad_token_id) | |
# noinspection PyCallingNonCallable | |
student_outputs = self( | |
input_ids, | |
attention_mask=src_mask, | |
decoder_input_ids=decoder_input_ids, | |
output_hidden_states=self.do_calc_hidden_loss, | |
output_attentions=False, | |
use_cache=False, | |
) | |
lm_logits = student_outputs["logits"] | |
# Same cross entropy vs. label smoothing logic as finetune.py | |
assert lm_logits.shape[-1] == self.model.config.vocab_size | |
if self.hparams.label_smoothing == 0: | |
# Same behavior as modeling_bart.py, besides ignoring pad_token_id | |
loss_fct = nn.CrossEntropyLoss(ignore_index=pad_token_id) | |
student_lm_loss = loss_fct(lm_logits.view(-1, lm_logits.shape[-1]), labels.view(-1)) | |
else: | |
lprobs = nn.functional.log_softmax(lm_logits, dim=-1) | |
student_lm_loss, _ = label_smoothed_nll_loss( | |
lprobs, labels, self.hparams.label_smoothing, ignore_index=pad_token_id | |
) | |
def zero_tensor(): | |
return torch.tensor(0.0).type_as(student_lm_loss) | |
teacher_enc_outputs = student_outputs[ | |
"encoder_last_hidden_state" | |
] # use this unless self.different_base_models | |
hid_loss_enc, hid_loss_dec = zero_tensor(), zero_tensor() | |
if self.different_encoder: # compute encoder hidden state loss | |
all_teacher_encoder_outputs = self.teacher.get_encoder()( | |
input_ids, | |
attention_mask=src_mask, | |
output_hidden_states=self.do_calc_hidden_loss, | |
) | |
if self.different_base_models: | |
teacher_enc_outputs = all_teacher_encoder_outputs["last_hidden_state"] | |
elif self.do_calc_hidden_loss: | |
hid_loss_enc = self.calc_hidden_loss( | |
src_mask, | |
student_outputs["encoder_hidden_states"], | |
all_teacher_encoder_outputs["hidden_states"], | |
self.e_matches, | |
normalize_hidden=self.hparams.normalize_hidden, | |
) | |
teacher_outputs = self.teacher( | |
input_ids, | |
attention_mask=src_mask, | |
encoder_outputs=(teacher_enc_outputs,), | |
decoder_input_ids=decoder_input_ids, | |
output_hidden_states=self.do_calc_hidden_loss, | |
use_cache=False, # since we are not passing labels, never let this default to True | |
) | |
dec_mask = decoder_input_ids.ne(pad_token_id) | |
loss_ce = self.calc_ce_loss(dec_mask, lm_logits, teacher_outputs["logits"]) | |
if self.do_calc_hidden_loss: # Intermediate supervision of decoder hidden states | |
hid_loss_dec = self.calc_hidden_loss( | |
dec_mask, | |
student_outputs["decoder_hidden_states"], | |
teacher_outputs["decoder_hidden_states"], | |
self.d_matches, | |
normalize_hidden=self.hparams.normalize_hidden, | |
) | |
blended_loss = ( | |
self.alpha_ce * loss_ce | |
+ self.alpha_mlm * student_lm_loss | |
+ self.hparams.alpha_hid * (hid_loss_enc + hid_loss_dec) | |
) | |
return blended_loss, loss_ce, student_lm_loss, hid_loss_enc, hid_loss_dec | |
def calc_hidden_loss(attention_mask, hidden_states, hidden_states_T, matches, normalize_hidden): | |
"""MSE(student_hid, teacher_hid[matches]). Called "Intermediate supervision" in paper. Inspired by TinyBERT.""" | |
msg = "expected list or tuple for hidden_states, got tensor of shape: " | |
assert not isinstance(hidden_states, torch.Tensor), f"{msg}{hidden_states.shape}" | |
assert not isinstance(hidden_states_T, torch.Tensor), f"{msg}{hidden_states_T.shape}" | |
mask = attention_mask.to(hidden_states[0]) | |
valid_count = mask.sum() * hidden_states[0].size(-1) | |
student_states = torch.stack([hidden_states[i] for i in range(len(matches))]) | |
teacher_states = torch.stack([hidden_states_T[j] for j in matches]) | |
assert student_states.shape == teacher_states.shape, f"{student_states.shape} != {teacher_states.shape}" | |
if normalize_hidden: | |
student_states = nn.functional.layer_norm(student_states, student_states.shape[1:]) | |
teacher_states = nn.functional.layer_norm(teacher_states, teacher_states.shape[1:]) | |
mse = nn.functional.mse_loss(student_states, teacher_states, reduction="none") | |
masked_mse = (mse * mask.unsqueeze(0).unsqueeze(-1)).sum() / valid_count | |
return masked_mse | |
def add_distill_args(parser): | |
# NOTE: if --student argument was specified and the teacher and student base models | |
# are different, the models still have to have the same tokenizer, specified by | |
# --tokenizer_name. So, for example, you can distill from t5_large to t5_small but not | |
# from bart to t5. This s because if the tokenizers are different, the output space | |
# for the two models is also different and their logits are not comparable. | |
parser.add_argument("--teacher", type=str) | |
parser.add_argument("--alpha_ce", default=0.8, type=float) | |
parser.add_argument("--alpha_mlm", default=0.2, type=float) | |
parser.add_argument("--alpha_hid", default=0.0, type=float, required=False) | |
parser.add_argument("--student", type=str, required=False) | |
parser.add_argument("--student_decoder_layers", default=12, type=int, required=False) | |
parser.add_argument("--student_encoder_layers", default=12, type=int, required=False) | |
parser.add_argument("--no_teacher", action="store_true", default=False) | |
parser.add_argument("--length_penalty", type=float, default=-1) | |
parser.add_argument("--supervise_forward", action="store_true", default=False) | |
parser.add_argument("--normalize_hidden", action="store_true", default=False) | |
class TranslationDistiller(SummarizationDistiller): | |
"""Supports T5, mBART, Marian, other models that inherit from Bart.""" | |
mode = "translation" | |
metric_names = ["bleu"] | |
default_val_metric = "bleu" | |
def __init__(self, hparams, **kwargs): | |
super().__init__(hparams, **kwargs) | |
assert hparams.src_lang is not None | |
assert hparams.tgt_lang is not None | |
self.dataset_kwargs["src_lang"] = hparams.src_lang | |
self.dataset_kwargs["tgt_lang"] = hparams.tgt_lang | |
if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, MBartTokenizer): | |
self.decoder_start_token_id = self.tokenizer.lang_code_to_id[hparams.tgt_lang] | |
def calc_generative_metrics(self, preds, target) -> dict: | |
return calculate_bleu(preds, target) | |
def add_model_specific_args(parser, root_dir): | |
TranslationModule.add_model_specific_args(parser, root_dir) | |
add_distill_args(parser) | |
return parser | |
def create_module(args): | |
if args.no_teacher: | |
module_cls = TranslationModule if "translation" in args.task else SummarizationModule | |
else: # DISTILL WITH TEACHER | |
module_cls = TranslationDistiller if "translation" in args.task else SummarizationDistiller | |
args.setup_cls: str = module_cls.__name__ | |
print(f"using module {args.setup_cls}") | |
model = module_cls(args) | |
return model | |
def distill_main(args): | |
Path(args.output_dir).mkdir(exist_ok=True) | |
check_output_dir(args, expected_items=3) | |
model = create_module(args) | |
return ft_main(args, model=model) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser = pl.Trainer.add_argparse_args(parser) | |
parser = SummarizationDistiller.add_model_specific_args(parser, os.getcwd()) | |
args = parser.parse_args() | |
distill_main(args) | |