Spaces:
Paused
Paused
#!/usr/bin/env python | |
# coding=utf-8 | |
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. | |
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""BERT finetuning runner. | |
Finetuning the library models for multiple choice on SWAG (Bert). | |
""" | |
import argparse | |
import csv | |
import glob | |
import logging | |
import os | |
import random | |
import numpy as np | |
import torch | |
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset | |
from torch.utils.data.distributed import DistributedSampler | |
from tqdm import tqdm, trange | |
import transformers | |
from transformers import ( | |
WEIGHTS_NAME, | |
AdamW, | |
AutoConfig, | |
AutoModelForMultipleChoice, | |
AutoTokenizer, | |
get_linear_schedule_with_warmup, | |
) | |
from transformers.trainer_utils import is_main_process | |
try: | |
from torch.utils.tensorboard import SummaryWriter | |
except ImportError: | |
from tensorboardX import SummaryWriter | |
logger = logging.getLogger(__name__) | |
class SwagExample(object): | |
"""A single training/test example for the SWAG dataset.""" | |
def __init__(self, swag_id, context_sentence, start_ending, ending_0, ending_1, ending_2, ending_3, label=None): | |
self.swag_id = swag_id | |
self.context_sentence = context_sentence | |
self.start_ending = start_ending | |
self.endings = [ | |
ending_0, | |
ending_1, | |
ending_2, | |
ending_3, | |
] | |
self.label = label | |
def __str__(self): | |
return self.__repr__() | |
def __repr__(self): | |
attributes = [ | |
"swag_id: {}".format(self.swag_id), | |
"context_sentence: {}".format(self.context_sentence), | |
"start_ending: {}".format(self.start_ending), | |
"ending_0: {}".format(self.endings[0]), | |
"ending_1: {}".format(self.endings[1]), | |
"ending_2: {}".format(self.endings[2]), | |
"ending_3: {}".format(self.endings[3]), | |
] | |
if self.label is not None: | |
attributes.append("label: {}".format(self.label)) | |
return ", ".join(attributes) | |
class InputFeatures(object): | |
def __init__(self, example_id, choices_features, label): | |
self.example_id = example_id | |
self.choices_features = [ | |
{"input_ids": input_ids, "input_mask": input_mask, "segment_ids": segment_ids} | |
for _, input_ids, input_mask, segment_ids in choices_features | |
] | |
self.label = label | |
def read_swag_examples(input_file, is_training=True): | |
with open(input_file, "r", encoding="utf-8") as f: | |
lines = list(csv.reader(f)) | |
if is_training and lines[0][-1] != "label": | |
raise ValueError("For training, the input file must contain a label column.") | |
examples = [ | |
SwagExample( | |
swag_id=line[2], | |
context_sentence=line[4], | |
start_ending=line[5], # in the swag dataset, the | |
# common beginning of each | |
# choice is stored in "sent2". | |
ending_0=line[7], | |
ending_1=line[8], | |
ending_2=line[9], | |
ending_3=line[10], | |
label=int(line[11]) if is_training else None, | |
) | |
for line in lines[1:] # we skip the line with the column names | |
] | |
return examples | |
def convert_examples_to_features(examples, tokenizer, max_seq_length, is_training): | |
"""Loads a data file into a list of `InputBatch`s.""" | |
# Swag is a multiple choice task. To perform this task using Bert, | |
# we will use the formatting proposed in "Improving Language | |
# Understanding by Generative Pre-Training" and suggested by | |
# @jacobdevlin-google in this issue | |
# https://github.com/google-research/bert/issues/38. | |
# | |
# Each choice will correspond to a sample on which we run the | |
# inference. For a given Swag example, we will create the 4 | |
# following inputs: | |
# - [CLS] context [SEP] choice_1 [SEP] | |
# - [CLS] context [SEP] choice_2 [SEP] | |
# - [CLS] context [SEP] choice_3 [SEP] | |
# - [CLS] context [SEP] choice_4 [SEP] | |
# The model will output a single value for each input. To get the | |
# final decision of the model, we will run a softmax over these 4 | |
# outputs. | |
features = [] | |
for example_index, example in tqdm(enumerate(examples)): | |
context_tokens = tokenizer.tokenize(example.context_sentence) | |
start_ending_tokens = tokenizer.tokenize(example.start_ending) | |
choices_features = [] | |
for ending_index, ending in enumerate(example.endings): | |
# We create a copy of the context tokens in order to be | |
# able to shrink it according to ending_tokens | |
context_tokens_choice = context_tokens[:] | |
ending_tokens = start_ending_tokens + tokenizer.tokenize(ending) | |
# Modifies `context_tokens_choice` and `ending_tokens` in | |
# place so that the total length is less than the | |
# specified length. Account for [CLS], [SEP], [SEP] with | |
# "- 3" | |
_truncate_seq_pair(context_tokens_choice, ending_tokens, max_seq_length - 3) | |
tokens = ["[CLS]"] + context_tokens_choice + ["[SEP]"] + ending_tokens + ["[SEP]"] | |
segment_ids = [0] * (len(context_tokens_choice) + 2) + [1] * (len(ending_tokens) + 1) | |
input_ids = tokenizer.convert_tokens_to_ids(tokens) | |
input_mask = [1] * len(input_ids) | |
# Zero-pad up to the sequence length. | |
padding = [0] * (max_seq_length - len(input_ids)) | |
input_ids += padding | |
input_mask += padding | |
segment_ids += padding | |
assert len(input_ids) == max_seq_length | |
assert len(input_mask) == max_seq_length | |
assert len(segment_ids) == max_seq_length | |
choices_features.append((tokens, input_ids, input_mask, segment_ids)) | |
label = example.label | |
if example_index < 5: | |
logger.info("*** Example ***") | |
logger.info("swag_id: {}".format(example.swag_id)) | |
for choice_idx, (tokens, input_ids, input_mask, segment_ids) in enumerate(choices_features): | |
logger.info("choice: {}".format(choice_idx)) | |
logger.info("tokens: {}".format(" ".join(tokens))) | |
logger.info("input_ids: {}".format(" ".join(map(str, input_ids)))) | |
logger.info("input_mask: {}".format(" ".join(map(str, input_mask)))) | |
logger.info("segment_ids: {}".format(" ".join(map(str, segment_ids)))) | |
if is_training: | |
logger.info("label: {}".format(label)) | |
features.append(InputFeatures(example_id=example.swag_id, choices_features=choices_features, label=label)) | |
return features | |
def _truncate_seq_pair(tokens_a, tokens_b, max_length): | |
"""Truncates a sequence pair in place to the maximum length.""" | |
# This is a simple heuristic which will always truncate the longer sequence | |
# one token at a time. This makes more sense than truncating an equal percent | |
# of tokens from each, since if one sequence is very short then each token | |
# that's truncated likely contains more information than a longer sequence. | |
while True: | |
total_length = len(tokens_a) + len(tokens_b) | |
if total_length <= max_length: | |
break | |
if len(tokens_a) > len(tokens_b): | |
tokens_a.pop() | |
else: | |
tokens_b.pop() | |
def accuracy(out, labels): | |
outputs = np.argmax(out, axis=1) | |
return np.sum(outputs == labels) | |
def select_field(features, field): | |
return [[choice[field] for choice in feature.choices_features] for feature in features] | |
def set_seed(args): | |
random.seed(args.seed) | |
np.random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
if args.n_gpu > 0: | |
torch.cuda.manual_seed_all(args.seed) | |
def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False): | |
if args.local_rank not in [-1, 0]: | |
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache | |
# Load data features from cache or dataset file | |
input_file = args.predict_file if evaluate else args.train_file | |
cached_features_file = os.path.join( | |
os.path.dirname(input_file), | |
"cached_{}_{}_{}".format( | |
"dev" if evaluate else "train", | |
list(filter(None, args.model_name_or_path.split("/"))).pop(), | |
str(args.max_seq_length), | |
), | |
) | |
if os.path.exists(cached_features_file) and not args.overwrite_cache and not output_examples: | |
logger.info("Loading features from cached file %s", cached_features_file) | |
features = torch.load(cached_features_file) | |
else: | |
logger.info("Creating features from dataset file at %s", input_file) | |
examples = read_swag_examples(input_file) | |
features = convert_examples_to_features(examples, tokenizer, args.max_seq_length, not evaluate) | |
if args.local_rank in [-1, 0]: | |
logger.info("Saving features into cached file %s", cached_features_file) | |
torch.save(features, cached_features_file) | |
if args.local_rank == 0: | |
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache | |
# Convert to Tensors and build dataset | |
all_input_ids = torch.tensor(select_field(features, "input_ids"), dtype=torch.long) | |
all_input_mask = torch.tensor(select_field(features, "input_mask"), dtype=torch.long) | |
all_segment_ids = torch.tensor(select_field(features, "segment_ids"), dtype=torch.long) | |
all_label = torch.tensor([f.label for f in features], dtype=torch.long) | |
if evaluate: | |
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) | |
else: | |
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label) | |
if output_examples: | |
return dataset, examples, features | |
return dataset | |
def train(args, train_dataset, model, tokenizer): | |
"""Train the model""" | |
if args.local_rank in [-1, 0]: | |
tb_writer = SummaryWriter() | |
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) | |
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) | |
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) | |
if args.max_steps > 0: | |
t_total = args.max_steps | |
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 | |
else: | |
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs | |
# Prepare optimizer and schedule (linear warmup and decay) | |
no_decay = ["bias", "LayerNorm.weight"] | |
optimizer_grouped_parameters = [ | |
{ | |
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], | |
"weight_decay": args.weight_decay, | |
}, | |
{"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, | |
] | |
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) | |
scheduler = get_linear_schedule_with_warmup( | |
optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total | |
) | |
if args.fp16: | |
try: | |
from apex import amp | |
except ImportError: | |
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) | |
# multi-gpu training (should be after apex fp16 initialization) | |
if args.n_gpu > 1: | |
model = torch.nn.DataParallel(model) | |
# Distributed training (should be after apex fp16 initialization) | |
if args.local_rank != -1: | |
model = torch.nn.parallel.DistributedDataParallel( | |
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True | |
) | |
# Train! | |
logger.info("***** Running training *****") | |
logger.info(" Num examples = %d", len(train_dataset)) | |
logger.info(" Num Epochs = %d", args.num_train_epochs) | |
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) | |
logger.info( | |
" Total train batch size (w. parallel, distributed & accumulation) = %d", | |
args.train_batch_size | |
* args.gradient_accumulation_steps | |
* (torch.distributed.get_world_size() if args.local_rank != -1 else 1), | |
) | |
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) | |
logger.info(" Total optimization steps = %d", t_total) | |
global_step = 0 | |
tr_loss, logging_loss = 0.0, 0.0 | |
model.zero_grad() | |
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) | |
set_seed(args) # Added here for reproductibility | |
for _ in train_iterator: | |
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) | |
for step, batch in enumerate(epoch_iterator): | |
model.train() | |
batch = tuple(t.to(args.device) for t in batch) | |
inputs = { | |
"input_ids": batch[0], | |
"attention_mask": batch[1], | |
# 'token_type_ids': None if args.model_type == 'xlm' else batch[2], | |
"token_type_ids": batch[2], | |
"labels": batch[3], | |
} | |
# if args.model_type in ['xlnet', 'xlm']: | |
# inputs.update({'cls_index': batch[5], | |
# 'p_mask': batch[6]}) | |
outputs = model(**inputs) | |
loss = outputs[0] # model outputs are always tuple in transformers (see doc) | |
if args.n_gpu > 1: | |
loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training | |
if args.gradient_accumulation_steps > 1: | |
loss = loss / args.gradient_accumulation_steps | |
if args.fp16: | |
with amp.scale_loss(loss, optimizer) as scaled_loss: | |
scaled_loss.backward() | |
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) | |
else: | |
loss.backward() | |
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) | |
tr_loss += loss.item() | |
if (step + 1) % args.gradient_accumulation_steps == 0: | |
optimizer.step() | |
scheduler.step() # Update learning rate schedule | |
model.zero_grad() | |
global_step += 1 | |
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: | |
# Log metrics | |
if ( | |
args.local_rank == -1 and args.evaluate_during_training | |
): # Only evaluate when single GPU otherwise metrics may not average well | |
results = evaluate(args, model, tokenizer) | |
for key, value in results.items(): | |
tb_writer.add_scalar("eval_{}".format(key), value, global_step) | |
tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) | |
tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) | |
logging_loss = tr_loss | |
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: | |
# Save model checkpoint | |
output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) | |
model_to_save = ( | |
model.module if hasattr(model, "module") else model | |
) # Take care of distributed/parallel training | |
model_to_save.save_pretrained(output_dir) | |
tokenizer.save_vocabulary(output_dir) | |
torch.save(args, os.path.join(output_dir, "training_args.bin")) | |
logger.info("Saving model checkpoint to %s", output_dir) | |
if args.max_steps > 0 and global_step > args.max_steps: | |
epoch_iterator.close() | |
break | |
if args.max_steps > 0 and global_step > args.max_steps: | |
train_iterator.close() | |
break | |
if args.local_rank in [-1, 0]: | |
tb_writer.close() | |
return global_step, tr_loss / global_step | |
def evaluate(args, model, tokenizer, prefix=""): | |
dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True) | |
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: | |
os.makedirs(args.output_dir) | |
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) | |
# Note that DistributedSampler samples randomly | |
eval_sampler = SequentialSampler(dataset) if args.local_rank == -1 else DistributedSampler(dataset) | |
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) | |
# Eval! | |
logger.info("***** Running evaluation {} *****".format(prefix)) | |
logger.info(" Num examples = %d", len(dataset)) | |
logger.info(" Batch size = %d", args.eval_batch_size) | |
eval_loss, eval_accuracy = 0, 0 | |
nb_eval_steps, nb_eval_examples = 0, 0 | |
for batch in tqdm(eval_dataloader, desc="Evaluating"): | |
model.eval() | |
batch = tuple(t.to(args.device) for t in batch) | |
with torch.no_grad(): | |
inputs = { | |
"input_ids": batch[0], | |
"attention_mask": batch[1], | |
# 'token_type_ids': None if args.model_type == 'xlm' else batch[2] # XLM don't use segment_ids | |
"token_type_ids": batch[2], | |
"labels": batch[3], | |
} | |
# if args.model_type in ['xlnet', 'xlm']: | |
# inputs.update({'cls_index': batch[4], | |
# 'p_mask': batch[5]}) | |
outputs = model(**inputs) | |
tmp_eval_loss, logits = outputs[:2] | |
eval_loss += tmp_eval_loss.mean().item() | |
logits = logits.detach().cpu().numpy() | |
label_ids = inputs["labels"].to("cpu").numpy() | |
tmp_eval_accuracy = accuracy(logits, label_ids) | |
eval_accuracy += tmp_eval_accuracy | |
nb_eval_steps += 1 | |
nb_eval_examples += inputs["input_ids"].size(0) | |
eval_loss = eval_loss / nb_eval_steps | |
eval_accuracy = eval_accuracy / nb_eval_examples | |
result = {"eval_loss": eval_loss, "eval_accuracy": eval_accuracy} | |
output_eval_file = os.path.join(args.output_dir, "eval_results.txt") | |
with open(output_eval_file, "w") as writer: | |
logger.info("***** Eval results *****") | |
for key in sorted(result.keys()): | |
logger.info("%s = %s", key, str(result[key])) | |
writer.write("%s = %s\n" % (key, str(result[key]))) | |
return result | |
def main(): | |
parser = argparse.ArgumentParser() | |
# Required parameters | |
parser.add_argument( | |
"--train_file", default=None, type=str, required=True, help="SWAG csv for training. E.g., train.csv" | |
) | |
parser.add_argument( | |
"--predict_file", | |
default=None, | |
type=str, | |
required=True, | |
help="SWAG csv for predictions. E.g., val.csv or test.csv", | |
) | |
parser.add_argument( | |
"--model_name_or_path", | |
default=None, | |
type=str, | |
required=True, | |
help="Path to pretrained model or model identifier from huggingface.co/models", | |
) | |
parser.add_argument( | |
"--output_dir", | |
default=None, | |
type=str, | |
required=True, | |
help="The output directory where the model checkpoints and predictions will be written.", | |
) | |
# Other parameters | |
parser.add_argument( | |
"--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" | |
) | |
parser.add_argument( | |
"--tokenizer_name", | |
default="", | |
type=str, | |
help="Pretrained tokenizer name or path if not the same as model_name", | |
) | |
parser.add_argument( | |
"--max_seq_length", | |
default=384, | |
type=int, | |
help=( | |
"The maximum total input sequence length after tokenization. Sequences " | |
"longer than this will be truncated, and sequences shorter than this will be padded." | |
), | |
) | |
parser.add_argument("--do_train", action="store_true", help="Whether to run training.") | |
parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") | |
parser.add_argument( | |
"--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step." | |
) | |
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") | |
parser.add_argument( | |
"--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." | |
) | |
parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") | |
parser.add_argument( | |
"--gradient_accumulation_steps", | |
type=int, | |
default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.", | |
) | |
parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight deay if we apply some.") | |
parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") | |
parser.add_argument( | |
"--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." | |
) | |
parser.add_argument( | |
"--max_steps", | |
default=-1, | |
type=int, | |
help="If > 0: set total number of training steps to perform. Override num_train_epochs.", | |
) | |
parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") | |
parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") | |
parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") | |
parser.add_argument( | |
"--eval_all_checkpoints", | |
action="store_true", | |
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", | |
) | |
parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") | |
parser.add_argument( | |
"--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" | |
) | |
parser.add_argument( | |
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" | |
) | |
parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") | |
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") | |
parser.add_argument( | |
"--fp16", | |
action="store_true", | |
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", | |
) | |
parser.add_argument( | |
"--fp16_opt_level", | |
type=str, | |
default="O1", | |
help=( | |
"For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." | |
"See details at https://nvidia.github.io/apex/amp.html" | |
), | |
) | |
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") | |
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") | |
args = parser.parse_args() | |
if ( | |
os.path.exists(args.output_dir) | |
and os.listdir(args.output_dir) | |
and args.do_train | |
and not args.overwrite_output_dir | |
): | |
raise ValueError( | |
"Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( | |
args.output_dir | |
) | |
) | |
# Setup distant debugging if needed | |
if args.server_ip and args.server_port: | |
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script | |
import ptvsd | |
print("Waiting for debugger attach") | |
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) | |
ptvsd.wait_for_attach() | |
# Setup CUDA, GPU & distributed training | |
if args.local_rank == -1 or args.no_cuda: | |
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") | |
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() | |
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs | |
torch.cuda.set_device(args.local_rank) | |
device = torch.device("cuda", args.local_rank) | |
torch.distributed.init_process_group(backend="nccl") | |
args.n_gpu = 1 | |
args.device = device | |
# Setup logging | |
logging.basicConfig( | |
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | |
datefmt="%m/%d/%Y %H:%M:%S", | |
level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, | |
) | |
logger.warning( | |
"Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", | |
args.local_rank, | |
device, | |
args.n_gpu, | |
bool(args.local_rank != -1), | |
args.fp16, | |
) | |
# Set the verbosity to info of the Transformers logger (on main process only): | |
if is_main_process(args.local_rank): | |
transformers.utils.logging.set_verbosity_info() | |
transformers.utils.logging.enable_default_handler() | |
transformers.utils.logging.enable_explicit_format() | |
# Set seed | |
set_seed(args) | |
# Load pretrained model and tokenizer | |
if args.local_rank not in [-1, 0]: | |
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab | |
config = AutoConfig.from_pretrained(args.config_name if args.config_name else args.model_name_or_path) | |
tokenizer = AutoTokenizer.from_pretrained( | |
args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, | |
) | |
model = AutoModelForMultipleChoice.from_pretrained( | |
args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config | |
) | |
if args.local_rank == 0: | |
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab | |
model.to(args.device) | |
logger.info("Training/evaluation parameters %s", args) | |
# Training | |
if args.do_train: | |
train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False) | |
global_step, tr_loss = train(args, train_dataset, model, tokenizer) | |
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) | |
# Save the trained model and the tokenizer | |
if args.local_rank == -1 or torch.distributed.get_rank() == 0: | |
logger.info("Saving model checkpoint to %s", args.output_dir) | |
# Save a trained model, configuration and tokenizer using `save_pretrained()`. | |
# They can then be reloaded using `from_pretrained()` | |
model_to_save = ( | |
model.module if hasattr(model, "module") else model | |
) # Take care of distributed/parallel training | |
model_to_save.save_pretrained(args.output_dir) | |
tokenizer.save_pretrained(args.output_dir) | |
# Good practice: save your training arguments together with the trained model | |
torch.save(args, os.path.join(args.output_dir, "training_args.bin")) | |
# Load a trained model and vocabulary that you have fine-tuned | |
model = AutoModelForMultipleChoice.from_pretrained(args.output_dir) | |
tokenizer = AutoTokenizer.from_pretrained(args.output_dir) | |
model.to(args.device) | |
# Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory | |
results = {} | |
if args.do_eval and args.local_rank in [-1, 0]: | |
if args.do_train: | |
checkpoints = [args.output_dir] | |
else: | |
# if do_train is False and do_eval is true, load model directly from pretrained. | |
checkpoints = [args.model_name_or_path] | |
if args.eval_all_checkpoints: | |
checkpoints = [ | |
os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) | |
] | |
logger.info("Evaluate the following checkpoints: %s", checkpoints) | |
for checkpoint in checkpoints: | |
# Reload the model | |
global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" | |
model = AutoModelForMultipleChoice.from_pretrained(checkpoint) | |
tokenizer = AutoTokenizer.from_pretrained(checkpoint) | |
model.to(args.device) | |
# Evaluate | |
result = evaluate(args, model, tokenizer, prefix=global_step) | |
result = {k + ("_{}".format(global_step) if global_step else ""): v for k, v in result.items()} | |
results.update(result) | |
logger.info("Results: {}".format(results)) | |
return results | |
if __name__ == "__main__": | |
main() | |