voice_clone_v2 / app.py
ahassoun's picture
Update app.py
ce3ffca
raw
history blame
8.03 kB
from TTS.api import TTS
import gradio as gr
from gradio import Dropdown
from scipy.io.wavfile import write
import os
import shutil
import re
user_choice = ""
MAX_NUMBER_SENTENCES = 10
file_upload_available = os.environ.get("ALLOW_FILE_UPLOAD")
tts = TTS("tts_models/multilingual/multi-dataset/bark", gpu=True)
def split_process(audio, chosen_out_track):
gr.Info("Cleaning your audio sample...")
os.makedirs("out", exist_ok=True)
write('test.wav', audio[0], audio[1])
os.system("python3 -m demucs.separate -n mdx_extra_q -j 4 test.wav -o out")
# return "./out/mdx_extra_q/test/vocals.wav","./out/mdx_extra_q/test/bass.wav","./out/mdx_extra_q/test/drums.wav","./out/mdx_extra_q/test/other.wav"
if chosen_out_track == "vocals":
print("Audio sample cleaned")
return "./out/mdx_extra_q/test/vocals.wav"
elif chosen_out_track == "bass":
return "./out/mdx_extra_q/test/bass.wav"
elif chosen_out_track == "drums":
return "./out/mdx_extra_q/test/drums.wav"
elif chosen_out_track == "other":
return "./out/mdx_extra_q/test/other.wav"
elif chosen_out_track == "all-in":
return "test.wav"
def infer(prompt, input_wav_file, clean_audio, hidden_numpy_audio):
print("""
—————
NEW INFERENCE:
———————
""")
if prompt == "":
gr.Warning("Do not forget to provide a tts prompt !")
if clean_audio is True:
print("We want to clean audio sample")
new_name = os.path.splitext(os.path.basename(input_wav_file))[0]
if os.path.exists(os.path.join("bark_voices", f"{new_name}_cleaned")):
print("This file has already been cleaned")
check_name = os.path.join("bark_voices", f"{new_name}_cleaned")
source_path = os.path.join(check_name, f"{new_name}_cleaned.wav")
else:
source_path = split_process(hidden_numpy_audio, "vocals")
new_path = os.path.join(os.path.dirname(
source_path), f"{new_name}_cleaned.wav")
os.rename(source_path, new_path)
source_path = new_path
else:
source_path = input_wav_file
destination_directory = "bark_voices"
file_name = os.path.splitext(os.path.basename(source_path))[0]
destination_path = os.path.join(destination_directory, file_name)
os.makedirs(destination_path, exist_ok=True)
shutil.move(source_path, os.path.join(
destination_path, f"{file_name}.wav"))
sentences = re.split(r'(?<=[.!?])\s+', prompt)
if len(sentences) > MAX_NUMBER_SENTENCES:
gr.Info("Your text is too long. To keep this demo enjoyable for everyone, we only kept the first 10 sentences :) Duplicate this space and set MAX_NUMBER_SENTENCES for longer texts ;)")
first_nb_sentences = sentences[:MAX_NUMBER_SENTENCES]
limited_prompt = ' '.join(first_nb_sentences)
prompt = limited_prompt
else:
prompt = prompt
gr.Info("Generating audio from prompt")
tts.tts_to_file(text=prompt,
file_path="output.wav",
voice_dir="bark_voices/",
speaker=f"{file_name}")
contents = os.listdir(f"bark_voices/{file_name}")
for item in contents:
print(item)
print("Preparing final waveform video ...")
tts_video = gr.make_waveform(audio="output.wav")
print(tts_video)
print("FINISHED")
return "output.wav", tts_video, gr.update(value=f"bark_voices/{file_name}/{contents[1]}", visible=True), gr.Group.update(visible=True), destination_path
prompt_choices = [
"I am very displeased with the progress being made to finish the cross-town transit line. transit line. This has been an embarrassing use of taxpayer dollars.",
"Yes, John is my friend, but He was never at my house watching the baseball game.",
"We are expecting a double digit increase in profits by the end of the fiscal year.",
"Hi Grandma, Just calling to ask for money, or I can't see you over the holidays. "
]
positive_prompts = {
prompt_choices[0]: "I am very pleased with the progress being made to finish the cross-town transit line. This has been an excellent use of taxpayer dollars.",
prompt_choices[1]: "Yes, John is my friend. He was at my house watching the baseball game all night.",
prompt_choices[2]: "We are expecting a modest single digit increase in profits by the end of the fiscal year.",
prompt_choices[3]: "Hi Grandma it’s me, Just calling to say I love you, and I can’t wait to see you over the holidays."
}
prompt = Dropdown(
label="Text to speech prompt",
choices=prompt_choices,
elem_id="tts-prompt"
)
css = """
#col-container {max-width: 780px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.mic-wrap > button {
width: 100%;
height: 60px;
font-size: 1.4em!important;
}
.record-icon.svelte-1thnwz {
display: flex;
position: relative;
margin-right: var(--size-2);
width: unset;
height: unset;
}
span.record-icon > span.dot.svelte-1thnwz {
width: 20px!important;
height: 20px!important;
}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
max-width: 15rem;
height: 36px;
}
"""
def load_hidden_mic(audio_in):
print("USER RECORDED A NEW SAMPLE")
return audio_in
def update_positive_prompt(prompt_value):
global user_choice
user_choice = prompt_value
if prompt_value in positive_prompts:
return positive_prompts[prompt_value]
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
with gr.Row():
with gr.Column():
prompt = gr.Dropdown(
label="Negative Speech Prompt",
choices=prompt_choices,
elem_id="tts-prompt"
)
texts_samples = gr.Textbox(
label="Positive prompts",
info="Please read out this prompt 5 times to generate a good sample",
value="",
lines=5,
elem_id="texts_samples"
)
# Connect the prompt change to the update_positive_prompt function
prompt.change(fn=update_positive_prompt,
inputs=prompt, outputs=texts_samples)
# Replace file input with microphone input
micro_in = gr.Audio(
label="Record voice to clone",
type="filepath",
source="microphone",
interactive=True
)
hidden_audio_numpy = gr.Audio(type="numpy", visible=False)
submit_btn = gr.Button("Submit")
with gr.Column():
cloned_out = gr.Audio(
label="Text to speech output", visible=False)
video_out = gr.Video(label="Waveform video",
elem_id="voice-video-out")
npz_file = gr.File(label=".npz file", visible=False)
folder_path = gr.Textbox(visible=False)
micro_in.stop_recording(fn=load_hidden_mic, inputs=[micro_in], outputs=[
hidden_audio_numpy], queue=False)
submit_btn.click(
fn=infer,
inputs=[
prompt,
micro_in,
hidden_audio_numpy
],
outputs=[
cloned_out,
video_out,
npz_file,
folder_path
]
)
demo.queue(api_open=False, max_size=10).launch()