voice_clone_v2 / transformers /tests /test_configuration_utils.py
ahassoun's picture
Upload 3018 files
ee6e328
raw
history blame
12.1 kB
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPT2Config
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
config_common_kwargs = {
"return_dict": False,
"output_hidden_states": True,
"output_attentions": True,
"torchscript": True,
"torch_dtype": "float16",
"use_bfloat16": True,
"tf_legacy_loss": True,
"pruned_heads": {"a": 1},
"tie_word_embeddings": False,
"is_decoder": True,
"cross_attention_hidden_size": 128,
"add_cross_attention": True,
"tie_encoder_decoder": True,
"max_length": 50,
"min_length": 3,
"do_sample": True,
"early_stopping": True,
"num_beams": 3,
"num_beam_groups": 3,
"diversity_penalty": 0.5,
"temperature": 2.0,
"top_k": 10,
"top_p": 0.7,
"typical_p": 0.2,
"repetition_penalty": 0.8,
"length_penalty": 0.8,
"no_repeat_ngram_size": 5,
"encoder_no_repeat_ngram_size": 5,
"bad_words_ids": [1, 2, 3],
"num_return_sequences": 3,
"chunk_size_feed_forward": 5,
"output_scores": True,
"return_dict_in_generate": True,
"forced_bos_token_id": 2,
"forced_eos_token_id": 3,
"remove_invalid_values": True,
"architectures": ["BertModel"],
"finetuning_task": "translation",
"id2label": {0: "label"},
"label2id": {"label": "0"},
"tokenizer_class": "BertTokenizerFast",
"prefix": "prefix",
"bos_token_id": 6,
"pad_token_id": 7,
"eos_token_id": 8,
"sep_token_id": 9,
"decoder_start_token_id": 10,
"exponential_decay_length_penalty": (5, 1.01),
"suppress_tokens": [0, 1],
"begin_suppress_tokens": 2,
"task_specific_params": {"translation": "some_params"},
"problem_type": "regression",
}
@is_staging_test
class ConfigPushToHubTester(unittest.TestCase):
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
@classmethod
def tearDownClass(cls):
try:
delete_repo(token=cls._token, repo_id="test-config")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="valid_org/test-config-org")
except HTTPError:
pass
try:
delete_repo(token=cls._token, repo_id="test-dynamic-config")
except HTTPError:
pass
def test_push_to_hub(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
config.push_to_hub("test-config", token=self._token)
new_config = BertConfig.from_pretrained(f"{USER}/test-config")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
# Reset repo
delete_repo(token=self._token, repo_id="test-config")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(tmp_dir, repo_id="test-config", push_to_hub=True, token=self._token)
new_config = BertConfig.from_pretrained(f"{USER}/test-config")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
def test_push_to_hub_in_organization(self):
config = BertConfig(
vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
)
config.push_to_hub("valid_org/test-config-org", use_auth_token=self._token)
new_config = BertConfig.from_pretrained("valid_org/test-config-org")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
# Reset repo
delete_repo(token=self._token, repo_id="valid_org/test-config-org")
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
tmp_dir, repo_id="valid_org/test-config-org", push_to_hub=True, use_auth_token=self._token
)
new_config = BertConfig.from_pretrained("valid_org/test-config-org")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(v, getattr(new_config, k))
def test_push_to_hub_dynamic_config(self):
CustomConfig.register_for_auto_class()
config = CustomConfig(attribute=42)
config.push_to_hub("test-dynamic-config", use_auth_token=self._token)
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map, {"AutoConfig": "custom_configuration.CustomConfig"})
new_config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-config", trust_remote_code=True)
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__, "CustomConfig")
self.assertEqual(new_config.attribute, 42)
class ConfigTestUtils(unittest.TestCase):
def test_config_from_string(self):
c = GPT2Config()
# attempt to modify each of int/float/bool/str config records and verify they were updated
n_embd = c.n_embd + 1 # int
resid_pdrop = c.resid_pdrop + 1.0 # float
scale_attn_weights = not c.scale_attn_weights # bool
summary_type = c.summary_type + "foo" # str
c.update_from_string(
f"n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}"
)
self.assertEqual(n_embd, c.n_embd, "mismatch for key: n_embd")
self.assertEqual(resid_pdrop, c.resid_pdrop, "mismatch for key: resid_pdrop")
self.assertEqual(scale_attn_weights, c.scale_attn_weights, "mismatch for key: scale_attn_weights")
self.assertEqual(summary_type, c.summary_type, "mismatch for key: summary_type")
def test_config_common_kwargs_is_complete(self):
base_config = PretrainedConfig()
missing_keys = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
missing_keys, ["is_encoder_decoder", "_name_or_path", "_commit_hash", "transformers_version"]
)
keys_with_defaults = [key for key, value in config_common_kwargs.items() if value == getattr(base_config, key)]
if len(keys_with_defaults) > 0:
raise ValueError(
"The following keys are set with the default values in"
" `test_configuration_common.config_common_kwargs` pick another value for them:"
f" {', '.join(keys_with_defaults)}."
)
def test_nested_config_load_from_dict(self):
config = AutoConfig.from_pretrained(
"hf-internal-testing/tiny-random-CLIPModel", text_config={"num_hidden_layers": 2}
)
self.assertNotIsInstance(config.text_config, dict)
self.assertEqual(config.text_config.__class__.__name__, "CLIPTextConfig")
def test_from_pretrained_subfolder(self):
with self.assertRaises(OSError):
# config is in subfolder, the following should not work without specifying the subfolder
_ = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder")
config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert-subfolder", subfolder="bert")
self.assertIsNotNone(config)
def test_cached_files_are_used_when_internet_is_down(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
_ = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.Session.request", return_value=response_mock) as mock_head:
_ = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
# This check we did call the fake head request
mock_head.assert_called()
def test_legacy_load_from_url(self):
# This test is for deprecated behavior and can be removed in v5
_ = BertConfig.from_pretrained(
"https://huggingface.co./hf-internal-testing/tiny-random-bert/resolve/main/config.json"
)
def test_local_versioning(self):
configuration = AutoConfig.from_pretrained("bert-base-cased")
configuration.configuration_files = ["config.4.0.0.json"]
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(tmp_dir)
configuration.hidden_size = 2
json.dump(configuration.to_dict(), open(os.path.join(tmp_dir, "config.4.0.0.json"), "w"))
# This should pick the new configuration file as the version of Transformers is > 4.0.0
new_configuration = AutoConfig.from_pretrained(tmp_dir)
self.assertEqual(new_configuration.hidden_size, 2)
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
configuration.configuration_files = ["config.42.0.0.json"]
configuration.hidden_size = 768
configuration.save_pretrained(tmp_dir)
shutil.move(os.path.join(tmp_dir, "config.4.0.0.json"), os.path.join(tmp_dir, "config.42.0.0.json"))
new_configuration = AutoConfig.from_pretrained(tmp_dir)
self.assertEqual(new_configuration.hidden_size, 768)
def test_repo_versioning_before(self):
# This repo has two configuration files, one for v4.0.0 and above with a different hidden size.
repo = "hf-internal-testing/test-two-configs"
import transformers as new_transformers
new_transformers.configuration_utils.__version__ = "v4.0.0"
new_configuration, kwargs = new_transformers.models.auto.AutoConfig.from_pretrained(
repo, return_unused_kwargs=True
)
self.assertEqual(new_configuration.hidden_size, 2)
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(kwargs, {})
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
old_transformers.configuration_utils.__version__ = "v3.0.0"
old_configuration = old_transformers.models.auto.AutoConfig.from_pretrained(repo)
self.assertEqual(old_configuration.hidden_size, 768)