voice_clone_v2 / transformers /tests /test_backbone_common.py
ahassoun's picture
Upload 3018 files
ee6e328
raw
history blame
8.74 kB
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import inspect
from transformers.testing_utils import require_torch, torch_device
from transformers.utils.backbone_utils import BackboneType
@require_torch
class BackboneTesterMixin:
all_model_classes = ()
has_attentions = True
def test_config(self):
config_class = self.config_class
# test default config
config = config_class()
self.assertIsNotNone(config)
num_stages = len(config.depths) if hasattr(config, "depths") else config.num_hidden_layers
expected_stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, num_stages + 1)]
self.assertEqual(config.stage_names, expected_stage_names)
self.assertTrue(set(config.out_features).issubset(set(config.stage_names)))
# Test out_features and out_indices are correctly set
# out_features and out_indices both None
config = config_class(out_features=None, out_indices=None)
self.assertEqual(config.out_features, [config.stage_names[-1]])
self.assertEqual(config.out_indices, [len(config.stage_names) - 1])
# out_features and out_indices both set
config = config_class(out_features=["stem", "stage1"], out_indices=[0, 1])
self.assertEqual(config.out_features, ["stem", "stage1"])
self.assertEqual(config.out_indices, [0, 1])
# Only out_features set
config = config_class(out_features=["stage1", "stage3"])
self.assertEqual(config.out_features, ["stage1", "stage3"])
self.assertEqual(config.out_indices, [1, 3])
# Only out_indices set
config = config_class(out_indices=[0, 2])
self.assertEqual(config.out_features, [config.stage_names[0], config.stage_names[2]])
self.assertEqual(config.out_indices, [0, 2])
# Error raised when out_indices do not correspond to out_features
with self.assertRaises(ValueError):
config = config_class(out_features=["stage1", "stage2"], out_indices=[0, 2])
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_channels(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertEqual(len(model.channels), len(config.out_features))
num_features = model.num_features
out_indices = [config.stage_names.index(feat) for feat in config.out_features]
out_channels = [num_features[idx] for idx in out_indices]
self.assertListEqual(model.channels, out_channels)
new_config = copy.deepcopy(config)
new_config.out_features = None
model = model_class(new_config)
self.assertEqual(len(model.channels), 1)
self.assertListEqual(model.channels, [num_features[-1]])
new_config = copy.deepcopy(config)
new_config.out_indices = None
model = model_class(new_config)
self.assertEqual(len(model.channels), 1)
self.assertListEqual(model.channels, [num_features[-1]])
def test_create_from_modified_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
result = model(**inputs_dict)
self.assertEqual(len(result.feature_maps), len(config.out_features))
self.assertEqual(len(model.channels), len(config.out_features))
self.assertEqual(len(result.feature_maps), len(config.out_indices))
self.assertEqual(len(model.channels), len(config.out_indices))
# Check output of last stage is taken if out_features=None, out_indices=None
modified_config = copy.deepcopy(config)
modified_config.out_features = None
model = model_class(modified_config)
model.to(torch_device)
model.eval()
result = model(**inputs_dict)
self.assertEqual(len(result.feature_maps), 1)
self.assertEqual(len(model.channels), 1)
modified_config = copy.deepcopy(config)
modified_config.out_indices = None
model = model_class(modified_config)
model.to(torch_device)
model.eval()
result = model(**inputs_dict)
self.assertEqual(len(result.feature_maps), 1)
self.assertEqual(len(model.channels), 1)
# Check backbone can be initialized with fresh weights
modified_config = copy.deepcopy(config)
modified_config.use_pretrained_backbone = False
model = model_class(modified_config)
model.to(torch_device)
model.eval()
result = model(**inputs_dict)
def test_backbone_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for backbone_class in self.all_model_classes:
backbone = backbone_class(config)
self.assertTrue(hasattr(backbone, "backbone_type"))
self.assertTrue(hasattr(backbone, "stage_names"))
self.assertTrue(hasattr(backbone, "num_features"))
self.assertTrue(hasattr(backbone, "out_indices"))
self.assertTrue(hasattr(backbone, "out_features"))
self.assertTrue(hasattr(backbone, "out_feature_channels"))
self.assertTrue(hasattr(backbone, "channels"))
self.assertIsInstance(backbone.backbone_type, BackboneType)
# Verify num_features has been initialized in the backbone init
self.assertIsNotNone(backbone.num_features)
self.assertTrue(len(backbone.channels) == len(backbone.out_indices))
self.assertTrue(len(backbone.stage_names) == len(backbone.num_features))
self.assertTrue(len(backbone.channels) <= len(backbone.num_features))
self.assertTrue(len(backbone.out_feature_channels) == len(backbone.stage_names))
def test_backbone_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
batch_size = inputs_dict["pixel_values"].shape[0]
for backbone_class in self.all_model_classes:
backbone = backbone_class(config)
backbone.to(torch_device)
backbone.eval()
outputs = backbone(**inputs_dict)
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps, tuple)
self.assertTrue(len(outputs.feature_maps) == len(backbone.channels))
for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels):
self.assertTrue(feature_map.shape[:2], (batch_size, n_channels))
self.assertIsNone(outputs.hidden_states)
self.assertIsNone(outputs.attentions)
# Test output_hidden_states=True
outputs = backbone(**inputs_dict, output_hidden_states=True)
self.assertIsNotNone(outputs.hidden_states)
self.assertTrue(len(outputs.hidden_states), len(backbone.stage_names))
for hidden_state, n_channels in zip(outputs.hidden_states, backbone.channels):
self.assertTrue(hidden_state.shape[:2], (batch_size, n_channels))
# Test output_attentions=True
if self.has_attentions:
outputs = backbone(**inputs_dict, output_attentions=True)
self.assertIsNotNone(outputs.attentions)