Spaces:
Paused
Paused
File size: 15,586 Bytes
eb21a2f c9cdb67 eb21a2f c9cdb67 eb21a2f c9cdb67 eb21a2f c9cdb67 eb21a2f c9cdb67 eb21a2f c9cdb67 eb21a2f c9cdb67 eb21a2f c9cdb67 eb21a2f c9cdb67 eb21a2f c9cdb67 eb21a2f c9cdb67 eb21a2f c9cdb67 eb21a2f c9cdb67 eb21a2f c9cdb67 eb21a2f c9cdb67 eb21a2f c9cdb67 eb21a2f c9cdb67 eb21a2f c9cdb67 eb21a2f c9cdb67 eb21a2f c9cdb67 eb21a2f c9cdb67 b4f3031 c9cdb67 eb21a2f 9a1196d c9cdb67 eb21a2f c9cdb67 eb21a2f c9cdb67 9a1196d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
import gradio as gr
from share_btn import community_icon_html, loading_icon_html, share_js
import os
import shutil
import re
#from huggingface_hub import snapshot_download
import numpy as np
from scipy.io import wavfile
from scipy.io.wavfile import write, read
from pydub import AudioSegment
file_upload_available = os.environ.get("ALLOW_FILE_UPLOAD")
MAX_NUMBER_SENTENCES = 10
import json
with open("characters.json", "r") as file:
data = json.load(file)
characters = [
{
"image": item["image"],
"title": item["title"],
"speaker": item["speaker"]
}
for item in data
]
from TTS.api import TTS
tts = TTS("tts_models/multilingual/multi-dataset/bark", gpu=True)
def cut_wav(input_path, max_duration):
# Load the WAV file
audio = AudioSegment.from_wav(input_path)
# Calculate the duration of the audio
audio_duration = len(audio) / 1000 # Convert milliseconds to seconds
# Determine the duration to cut (maximum of max_duration and actual audio duration)
cut_duration = min(max_duration, audio_duration)
# Cut the audio
cut_audio = audio[:int(cut_duration * 1000)] # Convert seconds to milliseconds
# Get the input file name without extension
file_name = os.path.splitext(os.path.basename(input_path))[0]
# Construct the output file path with the original file name and "_cut" suffix
output_path = f"{file_name}_cut.wav"
# Save the cut audio as a new WAV file
cut_audio.export(output_path, format="wav")
return output_path
def load_hidden(audio_in):
return audio_in
def load_hidden_mic(audio_in):
print("USER RECORDED A NEW SAMPLE")
library_path = 'bark_voices'
folder_name = 'audio-0-100'
second_folder_name = 'audio-0-100_cleaned'
folder_path = os.path.join(library_path, folder_name)
second_folder_path = os.path.join(library_path, second_folder_name)
print("We need to clean previous util files, if needed:")
if os.path.exists(folder_path):
try:
shutil.rmtree(folder_path)
print(f"Successfully deleted the folder previously created from last raw recorded sample: {folder_path}")
except OSError as e:
print(f"Error: {folder_path} - {e.strerror}")
else:
print(f"OK, the folder for a raw recorded sample does not exist: {folder_path}")
if os.path.exists(second_folder_path):
try:
shutil.rmtree(second_folder_path)
print(f"Successfully deleted the folder previously created from last cleaned recorded sample: {second_folder_path}")
except OSError as e:
print(f"Error: {second_folder_path} - {e.strerror}")
else:
print(f"Ok, the folder for a cleaned recorded sample does not exist: {second_folder_path}")
return audio_in
def clear_clean_ckeck():
return False
def wipe_npz_file(folder_path):
print("YO β’ a user is manipulating audio inputs")
def split_process(audio, chosen_out_track):
gr.Info("Cleaning your audio sample...")
os.makedirs("out", exist_ok=True)
write('test.wav', audio[0], audio[1])
os.system("python3 -m demucs.separate -n mdx_extra_q -j 4 test.wav -o out")
#return "./out/mdx_extra_q/test/vocals.wav","./out/mdx_extra_q/test/bass.wav","./out/mdx_extra_q/test/drums.wav","./out/mdx_extra_q/test/other.wav"
if chosen_out_track == "vocals":
print("Audio sample cleaned")
return "./out/mdx_extra_q/test/vocals.wav"
elif chosen_out_track == "bass":
return "./out/mdx_extra_q/test/bass.wav"
elif chosen_out_track == "drums":
return "./out/mdx_extra_q/test/drums.wav"
elif chosen_out_track == "other":
return "./out/mdx_extra_q/test/other.wav"
elif chosen_out_track == "all-in":
return "test.wav"
def update_selection(selected_state: gr.SelectData):
c_image = characters[selected_state.index]["image"]
c_title = characters[selected_state.index]["title"]
c_speaker = characters[selected_state.index]["speaker"]
return c_title, selected_state
def infer(prompt, input_wav_file, clean_audio, hidden_numpy_audio):
print("""
βββββ
NEW INFERENCE:
βββββββ
""")
if prompt == "":
gr.Warning("Do not forget to provide a tts prompt !")
if clean_audio is True :
print("We want to clean audio sample")
# Extract the file name without the extension
new_name = os.path.splitext(os.path.basename(input_wav_file))[0]
print(f"FILE BASENAME is: {new_name}")
if os.path.exists(os.path.join("bark_voices", f"{new_name}_cleaned")):
print("This file has already been cleaned")
check_name = os.path.join("bark_voices", f"{new_name}_cleaned")
source_path = os.path.join(check_name, f"{new_name}_cleaned.wav")
else:
print("This file is new, we need to clean and store it")
source_path = split_process(hidden_numpy_audio, "vocals")
# Rename the file
new_path = os.path.join(os.path.dirname(source_path), f"{new_name}_cleaned.wav")
os.rename(source_path, new_path)
source_path = new_path
else :
print("We do NOT want to clean audio sample")
# Path to your WAV file
source_path = input_wav_file
# Destination directory
destination_directory = "bark_voices"
# Extract the file name without the extension
file_name = os.path.splitext(os.path.basename(source_path))[0]
# Construct the full destination directory path
destination_path = os.path.join(destination_directory, file_name)
# Create the new directory
os.makedirs(destination_path, exist_ok=True)
# Move the WAV file to the new directory
shutil.move(source_path, os.path.join(destination_path, f"{file_name}.wav"))
# βββββ
# Split the text into sentences based on common punctuation marks
sentences = re.split(r'(?<=[.!?])\s+', prompt)
if len(sentences) > MAX_NUMBER_SENTENCES:
gr.Info("Your text is too long. To keep this demo enjoyable for everyone, we only kept the first 10 sentences :) Duplicate this space and set MAX_NUMBER_SENTENCES for longer texts ;)")
# Keep only the first MAX_NUMBER_SENTENCES sentences
first_nb_sentences = sentences[:MAX_NUMBER_SENTENCES]
# Join the selected sentences back into a single string
limited_prompt = ' '.join(first_nb_sentences)
prompt = limited_prompt
else:
prompt = prompt
gr.Info("Generating audio from prompt")
tts.tts_to_file(text=prompt,
file_path="output.wav",
voice_dir="bark_voices/",
speaker=f"{file_name}")
# List all the files and subdirectories in the given directory
contents = os.listdir(f"bark_voices/{file_name}")
# Print the contents
for item in contents:
print(item)
print("Preparing final waveform video ...")
tts_video = gr.make_waveform(audio="output.wav")
print(tts_video)
print("FINISHED")
return "output.wav", tts_video, gr.update(value=f"bark_voices/{file_name}/{contents[1]}", visible=True), gr.Group.update(visible=True), destination_path
def infer_from_c(prompt, c_name):
print("""
βββββ
NEW INFERENCE:
βββββββ
""")
if prompt == "":
gr.Warning("Do not forget to provide a tts prompt !")
print("Warning about prompt sent to user")
print(f"USING VOICE LIBRARY: {c_name}")
# Split the text into sentences based on common punctuation marks
sentences = re.split(r'(?<=[.!?])\s+', prompt)
if len(sentences) > MAX_NUMBER_SENTENCES:
gr.Info("Your text is too long. To keep this demo enjoyable for everyone, we only kept the first 10 sentences :) Duplicate this space and set MAX_NUMBER_SENTENCES for longer texts ;)")
# Keep only the first MAX_NUMBER_SENTENCES sentences
first_nb_sentences = sentences[:MAX_NUMBER_SENTENCES]
# Join the selected sentences back into a single string
limited_prompt = ' '.join(first_nb_sentences)
prompt = limited_prompt
else:
prompt = prompt
if c_name == "":
gr.Warning("Voice character is not properly selected. Please ensure that the name of the chosen voice is specified in the Character Name input.")
print("Warning about Voice Name sent to user")
else:
print(f"Generating audio from prompt with {c_name} ;)")
tts.tts_to_file(text=prompt,
file_path="output.wav",
voice_dir="examples/library/",
speaker=f"{c_name}")
print("Preparing final waveform video ...")
tts_video = gr.make_waveform(audio="output.wav")
print(tts_video)
print("FINISHED")
return "output.wav", tts_video, gr.update(value=f"examples/library/{c_name}/{c_name}.npz", visible=True), gr.Group.update(visible=True)
css = """
#col-container {max-width: 780px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.mic-wrap > button {
width: 100%;
height: 60px;
font-size: 1.4em!important;
}
.record-icon.svelte-1thnwz {
display: flex;
position: relative;
margin-right: var(--size-2);
width: unset;
height: unset;
}
span.record-icon > span.dot.svelte-1thnwz {
width: 20px!important;
height: 20px!important;
}
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
max-width: 15rem;
height: 36px;
}
div#share-btn-container > div {
flex-direction: row;
background: black;
align-items: center;
}
#share-btn-container:hover {
background-color: #060606;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor:pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.5rem !important;
padding-bottom: 0.5rem !important;
right:0;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
#share-btn-container.hidden {
display: none!important;
}
img[src*='#center'] {
display: block;
margin: auto;
}
.footer {
margin-bottom: 45px;
margin-top: 10px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer>p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer>p {
background: #0b0f19;
}
.disclaimer {
text-align: left;
}
.disclaimer > p {
font-size: .8rem;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
<h1 style="text-align: center;">Voice Cloning Demo</h1>
""")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(
label = "Text to speech prompt",
info = "One or two sentences at a time is better* (max: 10)",
placeholder = "Hello friend! How are you today?",
elem_id = "tts-prompt"
)
with gr.Column():
audio_in = gr.Audio(
label="WAV voice to clone",
type="filepath",
source="upload",
interactive = False
)
hidden_audio_numpy = gr.Audio(type="numpy", visible=False)
submit_btn = gr.Button("Submit")
with gr.Tab("Microphone"):
texts_samples = gr.Textbox(label = "Helpers",
info = "You can read out loud one of these sentences if you do not know what to record :)",
value = """"Jazz, a quirky mix of groovy saxophones and wailing trumpets, echoes through the vibrant city streets."
βββ
"A majestic orchestra plays enchanting melodies, filling the air with harmony."
βββ
"The exquisite aroma of freshly baked bread wafts from a cozy bakery, enticing passersby."
βββ
"A thunderous roar shakes the ground as a massive jet takes off into the sky, leaving trails of white behind."
βββ
"Laughter erupts from a park where children play, their innocent voices rising like tinkling bells."
βββ
"Waves crash on the beach, and seagulls caw as they soar overhead, a symphony of nature's sounds."
βββ
"In the distance, a blacksmith hammers red-hot metal, the rhythmic clang punctuating the day."
βββ
"As evening falls, a soft hush blankets the world, crickets chirping in a soothing rhythm."
""",
interactive = False,
lines = 5
)
micro_in = gr.Audio(
label="Record voice to clone",
type="filepath",
source="microphone",
interactive = True
)
clean_micro = gr.Checkbox(label="Clean sample ?", value=False)
micro_submit_btn = gr.Button("Submit")
audio_in.upload(fn=load_hidden, inputs=[audio_in], outputs=[hidden_audio_numpy], queue=False)
micro_in.stop_recording(fn=load_hidden_mic, inputs=[micro_in], outputs=[hidden_audio_numpy], queue=False)
with gr.Column():
cloned_out = gr.Audio(
label="Text to speech output",
visible = False
)
video_out = gr.Video(
label = "Waveform video",
elem_id = "voice-video-out"
)
npz_file = gr.File(
label = ".npz file",
visible = False
)
folder_path = gr.Textbox(visible=False)
audio_in.change(fn=wipe_npz_file, inputs=[folder_path], queue=False)
micro_in.clear(fn=wipe_npz_file, inputs=[folder_path], queue=False)
submit_btn.click(
fn = infer,
inputs = [
prompt,
audio_in,
hidden_audio_numpy
],
outputs = [
cloned_out,
video_out,
npz_file,
folder_path
]
)
micro_submit_btn.click(
fn = infer,
inputs = [
prompt,
micro_in,
clean_micro,
hidden_audio_numpy
],
outputs = [
cloned_out,
video_out,
npz_file,
folder_path
]
)
demo.queue(api_open=False, max_size=10).launch()
|