File size: 25,279 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import itertools
import json
import linecache
import math
import os
import pickle
import socket
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List, Tuple, Union

import git
import numpy as np
import torch
import torch.distributed as dist
from rouge_score import rouge_scorer, scoring
from sacrebleu import corpus_bleu
from sentence_splitter import add_newline_to_end_of_each_sentence
from torch import nn
from torch.utils.data import Dataset, Sampler

from transformers import BartTokenizer, EvalPrediction, PreTrainedTokenizer, T5Tokenizer
from transformers.models.bart.modeling_bart import shift_tokens_right
from transformers.utils import cached_property


try:
    from fairseq.data.data_utils import batch_by_size

    FAIRSEQ_AVAILABLE = True
except (ImportError, ModuleNotFoundError):
    FAIRSEQ_AVAILABLE = False


def label_smoothed_nll_loss(lprobs, target, epsilon, ignore_index=-100):
    """From fairseq"""
    if target.dim() == lprobs.dim() - 1:
        target = target.unsqueeze(-1)
    nll_loss = -lprobs.gather(dim=-1, index=target)
    smooth_loss = -lprobs.sum(dim=-1, keepdim=True)
    if ignore_index is not None:
        pad_mask = target.eq(ignore_index)
        nll_loss.masked_fill_(pad_mask, 0.0)
        smooth_loss.masked_fill_(pad_mask, 0.0)
    else:
        nll_loss = nll_loss.squeeze(-1)
        smooth_loss = smooth_loss.squeeze(-1)

    nll_loss = nll_loss.sum()  # mean()? Scared to break other math.
    smooth_loss = smooth_loss.sum()
    eps_i = epsilon / lprobs.size(-1)
    loss = (1.0 - epsilon) * nll_loss + eps_i * smooth_loss
    return loss, nll_loss


def lmap(f: Callable, x: Iterable) -> List:
    """list(map(f, x))"""
    return list(map(f, x))


def calculate_bleu(output_lns, refs_lns, **kwargs) -> dict:
    """Uses sacrebleu's corpus_bleu implementation."""
    return {"bleu": round(corpus_bleu(output_lns, [refs_lns], **kwargs).score, 4)}


def build_compute_metrics_fn(task_name: str, tokenizer: PreTrainedTokenizer) -> Callable[[EvalPrediction], Dict]:
    def non_pad_len(tokens: np.ndarray) -> int:
        return np.count_nonzero(tokens != tokenizer.pad_token_id)

    def decode_pred(pred: EvalPrediction) -> Tuple[List[str], List[str]]:
        pred_ids = pred.predictions
        label_ids = pred.label_ids
        pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True)
        label_ids[label_ids == -100] = tokenizer.pad_token_id
        label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True)
        pred_str = lmap(str.strip, pred_str)
        label_str = lmap(str.strip, label_str)
        return pred_str, label_str

    def summarization_metrics(pred: EvalPrediction) -> Dict:
        pred_str, label_str = decode_pred(pred)
        rouge: Dict = calculate_rouge(pred_str, label_str)
        summ_len = np.round(np.mean(lmap(non_pad_len, pred.predictions)), 1)
        rouge.update({"gen_len": summ_len})
        return rouge

    def translation_metrics(pred: EvalPrediction) -> Dict:
        pred_str, label_str = decode_pred(pred)
        bleu: Dict = calculate_bleu(pred_str, label_str)
        gen_len = np.round(np.mean(lmap(non_pad_len, pred.predictions)), 1)
        bleu.update({"gen_len": gen_len})
        return bleu

    compute_metrics_fn = summarization_metrics if "summarization" in task_name else translation_metrics
    return compute_metrics_fn


def trim_batch(
    input_ids,
    pad_token_id,
    attention_mask=None,
):
    """Remove columns that are populated exclusively by pad_token_id"""
    keep_column_mask = input_ids.ne(pad_token_id).any(dim=0)
    if attention_mask is None:
        return input_ids[:, keep_column_mask]
    else:
        return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])


class AbstractSeq2SeqDataset(Dataset):
    def __init__(
        self,
        tokenizer,
        data_dir,
        max_source_length,
        max_target_length,
        type_path="train",
        n_obs=None,
        prefix="",
        **dataset_kwargs,
    ):
        super().__init__()
        self.src_file = Path(data_dir).joinpath(type_path + ".source")
        self.tgt_file = Path(data_dir).joinpath(type_path + ".target")
        self.len_file = Path(data_dir).joinpath(type_path + ".len")
        if os.path.exists(self.len_file):
            self.src_lens = pickle_load(self.len_file)
            self.used_char_len = False
        else:
            self.src_lens = self.get_char_lens(self.src_file)
            self.used_char_len = True
        self.max_source_length = max_source_length
        self.max_target_length = max_target_length
        assert min(self.src_lens) > 0, f"found empty line in {self.src_file}"
        self.tokenizer = tokenizer
        self.prefix = prefix if prefix is not None else ""

        if n_obs is not None:
            self.src_lens = self.src_lens[:n_obs]
        self.pad_token_id = self.tokenizer.pad_token_id
        self.dataset_kwargs = dataset_kwargs
        dataset_kwargs.update({"add_prefix_space": True} if isinstance(self.tokenizer, BartTokenizer) else {})

    def __len__(self):
        return len(self.src_lens)

    @staticmethod
    def get_char_lens(data_file):
        return [len(x) for x in Path(data_file).open().readlines()]

    @cached_property
    def tgt_lens(self):
        """Length in characters of target documents"""
        return self.get_char_lens(self.tgt_file)

    def make_sortish_sampler(self, batch_size, distributed=False, shuffle=True, **kwargs):
        if distributed:
            return DistributedSortishSampler(self, batch_size, shuffle=shuffle, **kwargs)
        else:
            return SortishSampler(self.src_lens, batch_size, shuffle=shuffle)

    def make_dynamic_sampler(self, max_tokens_per_batch=1024, **kwargs):
        assert FAIRSEQ_AVAILABLE, "Dynamic batch size requires `pip install fairseq`"
        assert not self.used_char_len, "You must call  python make_len_file.py before calling make_dynamic_sampler"
        sorted_indices = list(self.make_sortish_sampler(1024, shuffle=False))

        def num_tokens_in_example(i):
            return min(self.src_lens[i], self.max_target_length)

        # call fairseq cython function
        batch_sampler: List[List[int]] = batch_by_size(
            sorted_indices,
            num_tokens_fn=num_tokens_in_example,
            max_tokens=max_tokens_per_batch,
            required_batch_size_multiple=64,
        )
        shuffled_batches = [batch_sampler[i] for i in np.random.permutation(range(len(batch_sampler)))]
        # move the largest batch to the front to OOM quickly (uses an approximation for padding)
        approximate_toks_per_batch = [max(self.src_lens[i] for i in batch) * len(batch) for batch in shuffled_batches]
        largest_batch_idx = np.argmax(approximate_toks_per_batch)
        shuffled_batches[0], shuffled_batches[largest_batch_idx] = (
            shuffled_batches[largest_batch_idx],
            shuffled_batches[0],
        )
        return shuffled_batches

    def __getitem__(self, item):
        raise NotImplementedError("You must implement this")

    def collate_fn(self, batch):
        raise NotImplementedError("You must implement this")


class LegacySeq2SeqDataset(AbstractSeq2SeqDataset):
    def __getitem__(self, index) -> Dict[str, torch.Tensor]:
        """Call tokenizer on src and tgt_lines"""
        index = index + 1  # linecache starts at 1
        source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
        tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
        assert source_line, f"empty source line for index {index}"
        assert tgt_line, f"empty tgt line for index {index}"
        source_inputs = self.encode_line(self.tokenizer, source_line, self.max_source_length)
        target_inputs = self.encode_line(self.tokenizer, tgt_line, self.max_target_length)

        source_ids = source_inputs["input_ids"].squeeze()
        target_ids = target_inputs["input_ids"].squeeze()
        src_mask = source_inputs["attention_mask"].squeeze()
        return {
            "input_ids": source_ids,
            "attention_mask": src_mask,
            "labels": target_ids,
        }

    def encode_line(self, tokenizer, line, max_length, pad_to_max_length=True, return_tensors="pt"):
        """Only used by LegacyDataset"""
        return tokenizer(
            [line],
            max_length=max_length,
            padding="max_length" if pad_to_max_length else None,
            truncation=True,
            return_tensors=return_tensors,
            **self.dataset_kwargs,
        )

    def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
        input_ids = torch.stack([x["input_ids"] for x in batch])
        masks = torch.stack([x["attention_mask"] for x in batch])
        target_ids = torch.stack([x["labels"] for x in batch])
        pad_token_id = self.pad_token_id
        y = trim_batch(target_ids, pad_token_id)
        source_ids, source_mask = trim_batch(input_ids, pad_token_id, attention_mask=masks)
        batch = {
            "input_ids": source_ids,
            "attention_mask": source_mask,
            "labels": y,
        }
        return batch


class Seq2SeqDataset(AbstractSeq2SeqDataset):
    """A dataset that calls prepare_seq2seq_batch."""

    def __getitem__(self, index) -> Dict[str, str]:
        index = index + 1  # linecache starts at 1
        source_line = self.prefix + linecache.getline(str(self.src_file), index).rstrip("\n")
        tgt_line = linecache.getline(str(self.tgt_file), index).rstrip("\n")
        assert source_line, f"empty source line for index {index}"
        assert tgt_line, f"empty tgt line for index {index}"
        return {"tgt_texts": tgt_line, "src_texts": source_line, "id": index - 1}

    def collate_fn(self, batch) -> Dict[str, torch.Tensor]:
        """Call prepare_seq2seq_batch."""
        batch_encoding: Dict[str, torch.Tensor] = self.tokenizer.prepare_seq2seq_batch(
            [x["src_texts"] for x in batch],
            tgt_texts=[x["tgt_texts"] for x in batch],
            max_length=self.max_source_length,
            max_target_length=self.max_target_length,
            return_tensors="pt",
            **self.dataset_kwargs,
        ).data
        batch_encoding["ids"] = torch.tensor([x["id"] for x in batch])
        return batch_encoding


class Seq2SeqDataCollator:
    def __init__(self, tokenizer, data_args, decoder_start_token_id, tpu_num_cores=None):
        self.tokenizer = tokenizer
        self.pad_token_id = tokenizer.pad_token_id
        self.decoder_start_token_id = decoder_start_token_id
        assert (
            self.pad_token_id is not None
        ), f"pad_token_id is not defined for ({self.tokenizer.__class__.__name__}), it must be defined."
        self.data_args = data_args
        self.tpu_num_cores = tpu_num_cores
        self.dataset_kwargs = {"add_prefix_space": True} if isinstance(tokenizer, BartTokenizer) else {}
        if data_args.src_lang is not None:
            self.dataset_kwargs["src_lang"] = data_args.src_lang
        if data_args.tgt_lang is not None:
            self.dataset_kwargs["tgt_lang"] = data_args.tgt_lang

    def __call__(self, batch) -> Dict[str, torch.Tensor]:
        if hasattr(self.tokenizer, "prepare_seq2seq_batch"):
            batch = self._encode(batch)
            input_ids, attention_mask, labels = (
                batch["input_ids"],
                batch["attention_mask"],
                batch["labels"],
            )
        else:
            input_ids = torch.stack([x["input_ids"] for x in batch])
            attention_mask = torch.stack([x["attention_mask"] for x in batch])
            labels = torch.stack([x["labels"] for x in batch])

            labels = trim_batch(labels, self.pad_token_id)
            input_ids, attention_mask = trim_batch(input_ids, self.pad_token_id, attention_mask=attention_mask)

        if isinstance(self.tokenizer, T5Tokenizer):
            decoder_input_ids = self._shift_right_t5(labels)
        else:
            decoder_input_ids = shift_tokens_right(labels, self.pad_token_id, self.decoder_start_token_id)

        batch = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "decoder_input_ids": decoder_input_ids,
            "labels": labels,
        }
        return batch

    def _shift_right_t5(self, input_ids):
        # shift inputs to the right
        shifted_input_ids = input_ids.new_zeros(input_ids.shape)
        shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
        shifted_input_ids[..., 0] = self.pad_token_id
        return shifted_input_ids

    def _encode(self, batch) -> Dict[str, torch.Tensor]:
        batch_encoding = self.tokenizer.prepare_seq2seq_batch(
            [x["src_texts"] for x in batch],
            tgt_texts=[x["tgt_texts"] for x in batch],
            max_length=self.data_args.max_source_length,
            max_target_length=self.data_args.max_target_length,
            padding="max_length" if self.tpu_num_cores is not None else "longest",  # TPU hack
            return_tensors="pt",
            **self.dataset_kwargs,
        )
        return batch_encoding.data


class SortishSampler(Sampler):
    "Go through the text data by order of src length with a bit of randomness. From fastai repo."

    def __init__(self, data, batch_size, shuffle=True):
        self.data, self.bs, self.shuffle = data, batch_size, shuffle

    def __len__(self) -> int:
        return len(self.data)

    def __iter__(self):
        return iter(sortish_sampler_indices(self.data, self.bs, shuffle=self.shuffle))


def sortish_sampler_indices(data: List, bs: int, shuffle=True) -> np.array:
    "Go through the text data by order of src length with a bit of randomness. From fastai repo."
    if not shuffle:
        return np.argsort(np.array(data) * -1)

    def key_fn(i):
        return data[i]

    idxs = np.random.permutation(len(data))
    sz = bs * 50
    ck_idx = [idxs[i : i + sz] for i in range(0, len(idxs), sz)]
    sort_idx = np.concatenate([sorted(s, key=key_fn, reverse=True) for s in ck_idx])
    sz = bs
    ck_idx = [sort_idx[i : i + sz] for i in range(0, len(sort_idx), sz)]
    max_ck = np.argmax([key_fn(ck[0]) for ck in ck_idx])  # find the chunk with the largest key,
    ck_idx[0], ck_idx[max_ck] = ck_idx[max_ck], ck_idx[0]  # then make sure it goes first.
    sort_idx = np.concatenate(np.random.permutation(ck_idx[1:])) if len(ck_idx) > 1 else np.array([], dtype=int)
    sort_idx = np.concatenate((ck_idx[0], sort_idx))
    return sort_idx


class DistributedSortishSampler(Sampler):
    """Copied from torch DistributedSampler"""

    def __init__(self, dataset, batch_size, num_replicas=None, rank=None, add_extra_examples=True, shuffle=True):
        if num_replicas is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            num_replicas = dist.get_world_size()
        if rank is None:
            if not dist.is_available():
                raise RuntimeError("Requires distributed package to be available")
            rank = dist.get_rank()
        self.dataset = dataset
        self.num_replicas = num_replicas
        self.rank = rank
        self.epoch = 0
        if add_extra_examples:
            self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
            self.total_size = self.num_samples * self.num_replicas
        else:
            self.total_size = len(dataset)
            self.num_samples = len(self.available_indices)
        self.batch_size = batch_size
        self.add_extra_examples = add_extra_examples
        self.shuffle = shuffle

    def __iter__(self) -> Iterable:
        g = torch.Generator()
        g.manual_seed(self.epoch)

        sortish_data = [self.dataset.src_lens[i] for i in self.available_indices]
        sortish_indices = sortish_sampler_indices(sortish_data, self.batch_size, shuffle=self.shuffle)
        indices = [self.available_indices[i] for i in sortish_indices]
        assert len(indices) == self.num_samples
        return iter(indices)

    @cached_property
    def available_indices(self) -> np.array:
        indices = list(range(len(self.dataset)))
        # add extra samples to make it evenly divisible
        indices += indices[: (self.total_size - len(indices))]
        assert len(indices) == self.total_size
        # subsample
        available_indices = indices[self.rank : self.total_size : self.num_replicas]
        return available_indices

    def __len__(self):
        return self.num_samples

    def set_epoch(self, epoch):
        self.epoch = epoch


logger = getLogger(__name__)


def use_task_specific_params(model, task):
    """Update config with summarization specific params."""
    task_specific_params = model.config.task_specific_params

    if task_specific_params is not None:
        pars = task_specific_params.get(task, {})
        logger.info(f"setting model.config to task specific params for {task}:\n {pars}")
        logger.info("note: command line args may override some of these")
        model.config.update(pars)


def pickle_load(path):
    """pickle.load(path)"""
    with open(path, "rb") as f:
        return pickle.load(f)


def pickle_save(obj, path):
    """pickle.dump(obj, path)"""
    with open(path, "wb") as f:
        return pickle.dump(obj, f)


def flatten_list(summary_ids: List[List]):
    return list(itertools.chain.from_iterable(summary_ids))


def save_git_info(folder_path: str) -> None:
    """Save git information to output_dir/git_log.json"""
    repo_infos = get_git_info()
    save_json(repo_infos, os.path.join(folder_path, "git_log.json"))


def save_json(content, path, indent=4, **json_dump_kwargs):
    with open(path, "w") as f:
        json.dump(content, f, indent=indent, sort_keys=True, **json_dump_kwargs)


def load_json(path):
    with open(path) as f:
        return json.load(f)


def get_git_info():
    try:
        repo = git.Repo(search_parent_directories=True)
        repo_infos = {
            "repo_id": str(repo),
            "repo_sha": str(repo.head.object.hexsha),
            "repo_branch": str(repo.active_branch),
            "hostname": str(socket.gethostname()),
        }
        return repo_infos
    except TypeError:
        return {
            "repo_id": None,
            "repo_sha": None,
            "repo_branch": None,
            "hostname": None,
        }


ROUGE_KEYS = ["rouge1", "rouge2", "rougeL", "rougeLsum"]


def extract_rouge_mid_statistics(dct):
    new_dict = {}
    for k1, v1 in dct.items():
        mid = v1.mid
        new_dict[k1] = {stat: round(getattr(mid, stat), 4) for stat in ["precision", "recall", "fmeasure"]}
    return new_dict


def calculate_rouge(
    pred_lns: List[str],
    tgt_lns: List[str],
    use_stemmer=True,
    rouge_keys=ROUGE_KEYS,
    return_precision_and_recall=False,
    bootstrap_aggregation=True,
    newline_sep=True,
) -> Dict:
    """Calculate rouge using rouge_scorer package.

    Args:
        pred_lns: list of summaries generated by model
        tgt_lns: list of groundtruth summaries (e.g. contents of val.target)
        use_stemmer:  Bool indicating whether Porter stemmer should be used to
        strip word suffixes to improve matching.
        rouge_keys:  which metrics to compute, defaults to rouge1, rouge2, rougeL, rougeLsum
        return_precision_and_recall: (False) whether to also return precision and recall.
        bootstrap_aggregation: whether to do the typical bootstrap resampling of scores. Defaults to True, if False
            this function returns a collections.defaultdict[metric: list of values for each observation for each subscore]``
        newline_sep:(default=True) whether to add newline between sentences. This is essential for calculation rougeL
        on multi sentence summaries (CNN/DM dataset).

    Returns:
         Dict[score: value] if aggregate else defaultdict(list) keyed by rouge_keys

    """
    scorer = rouge_scorer.RougeScorer(rouge_keys, use_stemmer=use_stemmer)
    aggregator = scoring.BootstrapAggregator()
    for pred, tgt in zip(tgt_lns, pred_lns):
        # rougeLsum expects "\n" separated sentences within a summary
        if newline_sep:
            pred = add_newline_to_end_of_each_sentence(pred)
            tgt = add_newline_to_end_of_each_sentence(tgt)
        scores = scorer.score(pred, tgt)
        aggregator.add_scores(scores)

    if bootstrap_aggregation:
        result = aggregator.aggregate()
        if return_precision_and_recall:
            return extract_rouge_mid_statistics(result)  # here we return dict
        else:
            return {k: round(v.mid.fmeasure * 100, 4) for k, v in result.items()}

    else:
        return aggregator._scores  # here we return defaultdict(list)


# Utilities for freezing parameters and checking whether they are frozen


def freeze_params(model: nn.Module):
    """Set requires_grad=False for each of model.parameters()"""
    for par in model.parameters():
        par.requires_grad = False


def freeze_embeds(model):
    """Freeze token embeddings and positional embeddings for bart, just token embeddings for t5."""
    model_type = model.config.model_type

    if model_type in ["t5", "mt5"]:
        freeze_params(model.shared)
        for d in [model.encoder, model.decoder]:
            freeze_params(d.embed_tokens)
    elif model_type == "fsmt":
        for d in [model.model.encoder, model.model.decoder]:
            freeze_params(d.embed_positions)
            freeze_params(d.embed_tokens)
    else:
        freeze_params(model.model.shared)
        for d in [model.model.encoder, model.model.decoder]:
            freeze_params(d.embed_positions)
            freeze_params(d.embed_tokens)


def grad_status(model: nn.Module) -> Iterable:
    return (par.requires_grad for par in model.parameters())


def any_requires_grad(model: nn.Module) -> bool:
    return any(grad_status(model))


def assert_all_frozen(model):
    model_grads: List[bool] = list(grad_status(model))
    n_require_grad = sum(lmap(int, model_grads))
    npars = len(model_grads)
    assert not any(model_grads), f"{n_require_grad/npars:.1%} of {npars} weights require grad"


def assert_not_all_frozen(model):
    model_grads: List[bool] = list(grad_status(model))
    npars = len(model_grads)
    assert any(model_grads), f"none of {npars} weights require grad"


def parse_numeric_n_bool_cl_kwargs(unparsed_args: List[str]) -> Dict[str, Union[int, float, bool]]:
    """
    Parse an argv list of unspecified command line args to a dict.
    Assumes all values are either numeric or boolean in the form of true/false.
    """
    result = {}
    assert len(unparsed_args) % 2 == 0, f"got odd number of unparsed args: {unparsed_args}"
    num_pairs = len(unparsed_args) // 2
    for pair_num in range(num_pairs):
        i = 2 * pair_num
        assert unparsed_args[i].startswith("--")
        if unparsed_args[i + 1].lower() == "true":
            value = True
        elif unparsed_args[i + 1].lower() == "false":
            value = False
        else:
            try:
                value = int(unparsed_args[i + 1])
            except ValueError:
                value = float(unparsed_args[i + 1])  # this can raise another informative ValueError

        result[unparsed_args[i][2:]] = value
    return result


def write_txt_file(ordered_tgt, path):
    f = Path(path).open("w")
    for ln in ordered_tgt:
        f.write(ln + "\n")
        f.flush()


def chunks(lst, n):
    """Yield successive n-sized chunks from lst."""
    for i in range(0, len(lst), n):
        yield lst[i : i + n]


def check_output_dir(args, expected_items=0):
    """
    Checks whether to bail out if output_dir already exists and has more than expected_items in it

    `args`: needs to have the following attributes of `args`:
      - output_dir
      - do_train
      - overwrite_output_dir

    `expected_items`: normally 0 (default) - i.e. empty dir, but in some cases a few files are expected (e.g. recovery from OOM)
    """
    if (
        os.path.exists(args.output_dir)
        and len(os.listdir(args.output_dir)) > expected_items
        and args.do_train
        and not args.overwrite_output_dir
    ):
        raise ValueError(
            f"Output directory ({args.output_dir}) already exists and "
            f"has {len(os.listdir(args.output_dir))} items in it (expected {expected_items} items). "
            "Use --overwrite_output_dir to overcome."
        )