File size: 35,299 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
from typing import List, Union

from parameterized import parameterized

from transformers import is_torch_available
from transformers.testing_utils import require_torch, torch_device

from ..test_modeling_common import ids_tensor


if is_torch_available():
    import torch
    from torch import nn

    from transformers.generation import (
        EncoderNoRepeatNGramLogitsProcessor,
        EncoderRepetitionPenaltyLogitsProcessor,
        EpsilonLogitsWarper,
        EtaLogitsWarper,
        ExponentialDecayLengthPenalty,
        ForcedBOSTokenLogitsProcessor,
        ForcedEOSTokenLogitsProcessor,
        HammingDiversityLogitsProcessor,
        InfNanRemoveLogitsProcessor,
        LogitNormalization,
        LogitsProcessorList,
        MinLengthLogitsProcessor,
        MinNewTokensLengthLogitsProcessor,
        NoBadWordsLogitsProcessor,
        NoRepeatNGramLogitsProcessor,
        PrefixConstrainedLogitsProcessor,
        RepetitionPenaltyLogitsProcessor,
        SequenceBiasLogitsProcessor,
        TemperatureLogitsWarper,
        TopKLogitsWarper,
        TopPLogitsWarper,
        TypicalLogitsWarper,
        UnbatchedClassifierFreeGuidanceLogitsProcessor,
    )


@require_torch
class LogitsProcessorTest(unittest.TestCase):
    def _get_uniform_logits(self, batch_size: int, length: int):
        scores = torch.ones((batch_size, length), device=torch_device, dtype=torch.float) / length
        return scores

    def test_min_length_dist_processor(self):
        vocab_size = 20
        batch_size = 4
        eos_token_id = 0

        min_dist_processor = MinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id)

        # check that min length is applied at length 5
        input_ids = ids_tensor((batch_size, 5), vocab_size=20)
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores_before_min_length = min_dist_processor(input_ids, scores)
        self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist(), 4 * [-float("inf")])

        # check that min length is not applied anymore at length 15
        input_ids = ids_tensor((batch_size, 15), vocab_size=20)
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores_before_min_length = min_dist_processor(input_ids, scores)
        self.assertFalse(torch.isinf(scores_before_min_length).any())

    @parameterized.expand([(0,), ([0, 18],)])
    def test_new_min_length_dist_processor(self, eos_token_id: Union[int, List[int]]):
        vocab_size = 20
        batch_size = 4

        # check that first input is skipped (min new length applying)
        input_ids = ids_tensor((batch_size, 5), vocab_size=20)
        new_min_dist_processor = MinNewTokensLengthLogitsProcessor(
            prompt_length_to_skip=input_ids.shape[-1], min_new_tokens=3, eos_token_id=eos_token_id
        )

        expected_eos_scores_before_min_length = batch_size * [-float("inf")]
        if isinstance(eos_token_id, list):
            expected_eos_scores_before_min_length *= len(eos_token_id)

        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores_before_min_length = new_min_dist_processor(input_ids, scores)
        self.assertListEqual(
            scores_before_min_length[:, eos_token_id].flatten().tolist(), expected_eos_scores_before_min_length
        )

        # check that, for skipping, now prompt length is 5, after that we expect first 5 tokens will be skipped
        self.assertTrue(new_min_dist_processor.prompt_length_to_skip == 5)

        # check that min length is applied at length 2
        input_ids = ids_tensor((batch_size, 2), vocab_size=20)
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores_before_min_length = new_min_dist_processor(input_ids, scores)
        self.assertListEqual(
            scores_before_min_length[:, eos_token_id].flatten().tolist(), expected_eos_scores_before_min_length
        )

        # check that min new length is applied at length 6 (because it has only 1 new token)
        input_ids = ids_tensor((batch_size, 6), vocab_size=20)
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores_before_min_length = new_min_dist_processor(input_ids, scores)
        self.assertListEqual(
            scores_before_min_length[:, eos_token_id].flatten().tolist(), expected_eos_scores_before_min_length
        )

        # check that min new length is applied at length 7 (because it has only 2 new tokens)
        input_ids = ids_tensor((batch_size, 7), vocab_size=20)
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores_before_min_length = new_min_dist_processor(input_ids, scores)
        self.assertListEqual(
            scores_before_min_length[:, eos_token_id].flatten().tolist(), expected_eos_scores_before_min_length
        )

        # check that min new length is not applied anymore at length 8
        input_ids = ids_tensor((batch_size, 8), vocab_size=20)
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores_before_min_length = new_min_dist_processor(input_ids, scores)
        self.assertFalse(torch.isinf(scores_before_min_length).any())

        # check that min new length is not applied anymore at length 15
        input_ids = ids_tensor((batch_size, 15), vocab_size=20)
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores_before_min_length = new_min_dist_processor(input_ids, scores)
        self.assertFalse(torch.isinf(scores_before_min_length).any())

    def test_temperature_dist_warper(self):
        input_ids = None
        length = 20

        scores = self._get_uniform_logits(batch_size=2, length=length)

        # tweak scores to not be uniform anymore
        scores[1, 5] = (1 / length) + 0.1  # peak, 1st batch
        scores[1, 10] = (1 / length) - 0.4  # valley, 1st batch

        # compute softmax
        probs = nn.functional.softmax(scores, dim=-1)

        temp_dist_warper_sharper = TemperatureLogitsWarper(temperature=0.5)
        temp_dist_warper_smoother = TemperatureLogitsWarper(temperature=1.3)

        warped_prob_sharp = nn.functional.softmax(temp_dist_warper_sharper(input_ids, scores.clone()), dim=-1)
        warped_prob_smooth = nn.functional.softmax(temp_dist_warper_smoother(input_ids, scores.clone()), dim=-1)

        # uniform distribution stays uniform
        self.assertTrue(torch.allclose(probs[0, :], warped_prob_sharp[0, :], atol=1e-3))
        self.assertTrue(torch.allclose(probs[0, :], warped_prob_smooth[0, :], atol=1e-3))

        # sharp peaks get higher, valleys get lower
        self.assertLess(probs[1, :].max(), warped_prob_sharp[1, :].max())
        self.assertGreater(probs[1, :].min(), warped_prob_sharp[1, :].min())

        # smooth peaks get lower, valleys get higher
        self.assertGreater(probs[1, :].max(), warped_prob_smooth[1, :].max())
        self.assertLess(probs[1, :].min(), warped_prob_smooth[1, :].min())

    def test_repetition_penalty_dist_process(self):
        input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long)
        vocab_size = 10

        scores = self._get_uniform_logits(batch_size=2, length=vocab_size)

        # give values special values
        scores[0, 0] = -(1 / vocab_size)
        scores[1, 5] = 4 / vocab_size

        rep_penalty_proc = RepetitionPenaltyLogitsProcessor(penalty=2.0)

        scores = rep_penalty_proc(input_ids, scores.clone())

        # check that values were correctly changed
        self.assertAlmostEqual(scores[0, 0].item(), -(1 / vocab_size) * 2)
        self.assertAlmostEqual(scores[0, 1].item(), (1 / vocab_size) / 2)

        self.assertAlmostEqual(scores[1, 0].item(), (1 / vocab_size) / 2)
        self.assertAlmostEqual(scores[1, 5].item(), (4 / vocab_size) / 2)

    def test_encoder_repetition_penalty_dist_process(self):
        input_ids = torch.tensor([[0, 1], [5, 0]], device=torch_device, dtype=torch.long)
        vocab_size = 10

        scores = self._get_uniform_logits(batch_size=2, length=vocab_size)

        # give values special values
        scores[0, 0] = -(1 / vocab_size)
        scores[1, 5] = 4 / vocab_size

        rep_penalty_proc = EncoderRepetitionPenaltyLogitsProcessor(penalty=2.0, encoder_input_ids=input_ids)

        scores = rep_penalty_proc(input_ids, scores.clone())

        # check that values were correctly changed
        self.assertAlmostEqual(scores[0, 0].item(), -(1 / vocab_size) / 2)
        self.assertAlmostEqual(scores[0, 1].item(), (1 / vocab_size) * 2)

        self.assertAlmostEqual(scores[1, 0].item(), (1 / vocab_size) * 2)
        self.assertAlmostEqual(scores[1, 5].item(), (4 / vocab_size) * 2)

        # check that values not in the encoder ids were NOT changed
        self.assertAlmostEqual(scores[0, 2].item(), (1 / vocab_size))
        self.assertAlmostEqual(scores[1, 2].item(), (1 / vocab_size))

    def test_top_k_dist_warper(self):
        input_ids = None
        vocab_size = 10
        batch_size = 2

        # create ramp distribution
        ramp_logits = (
            torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(batch_size, 1)
        )
        ramp_logits[1:, : vocab_size // 2] = ramp_logits[1:, : vocab_size // 2] + vocab_size

        top_k_warp = TopKLogitsWarper(3)

        scores = top_k_warp(input_ids, ramp_logits)

        # check that correct tokens are filtered
        self.assertListEqual(torch.isinf(scores[0]).tolist(), 7 * [True] + 3 * [False])
        self.assertListEqual(torch.isinf(scores[1]).tolist(), 2 * [True] + 3 * [False] + 5 * [True])

        # check special cases
        length = 5

        logits = self._get_uniform_logits(batch_size=batch_size, length=length)
        top_k_warp_safety_check = TopKLogitsWarper(top_k=1, filter_value=0.0, min_tokens_to_keep=3)

        scores = top_k_warp_safety_check(input_ids, logits)
        # uniform dist is not changed
        self.assertListEqual((scores == 0.0).to(torch.long).sum(dim=-1).tolist(), [0, 0])

        ramp_logits = torch.arange(length, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(batch_size, 1)
        scores = top_k_warp_safety_check(input_ids, ramp_logits)

        # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified
        self.assertListEqual((scores == 0.0).to(torch.long).sum(dim=-1).tolist(), [2, 2])

    def test_top_p_dist_warper(self):
        input_ids = None
        vocab_size = 10
        batch_size = 2

        # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
        dist = torch.log(
            torch.tensor([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]], device=torch_device, dtype=torch.float)
        )

        top_p_warp = TopPLogitsWarper(0.8)
        filtered_dist = torch.exp(top_p_warp(input_ids, dist))

        # dist should be filtered to keep min num values so that sum is >= top_p
        # exp (-inf) => 0
        EXPECTED_FILTERED_DIST = torch.tensor(
            [[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]], device=torch_device, dtype=torch.float
        )
        self.assertTrue(torch.allclose(filtered_dist, EXPECTED_FILTERED_DIST, atol=1e-3))

        # check edge cases with negative and extreme logits
        ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(
            batch_size, 1
        ) - (vocab_size // 2)

        # make ramp_logits more extreme
        ramp_logits[1] = ramp_logits[1] * 100.0

        # make sure at least 2 tokens are kept
        top_p_warp = TopPLogitsWarper(0.9, min_tokens_to_keep=2, filter_value=0.0)
        filtered_dist = top_p_warp(input_ids, ramp_logits)

        # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
        self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [3, 2])

    def test_typical_dist_warper(self):
        input_ids = None
        vocab_size = 10
        batch_size = 2

        # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
        dist = torch.log(
            torch.tensor([[0.97, 0.01, 0.01, 0.01], [0.4, 0.2, 0.2, 0.2]], device=torch_device, dtype=torch.float)
        )

        typical_warp = TypicalLogitsWarper(0.5)
        filtered_dist = torch.exp(typical_warp(input_ids, dist))

        # dist should be filtered to keep min num values so that sum is >= 0.7
        # exp (-inf) => 0
        EXPECTED_FILTERED_DIST = torch.tensor(
            [[0.97, 0.0, 0.0, 0.0], [0.0, 0.2, 0.2, 0.2]], device=torch_device, dtype=torch.float
        )
        self.assertTrue(torch.allclose(filtered_dist, EXPECTED_FILTERED_DIST, atol=1e-3))

        # check special cases
        length = 5

        logits = self._get_uniform_logits(batch_size=batch_size, length=length)
        typical_warp_safety_check = TypicalLogitsWarper(mass=0.5, filter_value=0.0, min_tokens_to_keep=3)

        scores = typical_warp_safety_check(input_ids, logits)
        # uniform dist is not changed
        self.assertListEqual((scores == 0.0).to(torch.long).sum(dim=-1).tolist(), [0, 0])

        # check edge cases with negative and extreme logits
        ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(
            batch_size, 1
        ) - (vocab_size // 2)

        # make ramp_logits more extreme
        ramp_logits[1] = ramp_logits[1] * 100.0

        # make sure at least 2 tokens are kept
        typical_warp = TypicalLogitsWarper(0.7, min_tokens_to_keep=2, filter_value=0.0)
        filtered_dist = typical_warp(input_ids, ramp_logits)

        # first batch should keep two tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
        self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [2, 2])

    def test_epsilon_dist_warper(self):
        input_ids = None
        vocab_size = 10
        batch_size = 2

        # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
        dist = torch.log(
            torch.tensor(
                [[0.87, 0.099, 0.001, 0.03], [0.4, 0.299, 0.101, 0.2]], device=torch_device, dtype=torch.float
            )
        )

        epsilon_warp = EpsilonLogitsWarper(0.1)
        filtered_dist = torch.exp(epsilon_warp(input_ids, dist))

        # dist should be filtered to only keep values with proba >= 0.1
        # exp (-inf) => 0
        EXPECTED_FILTERED_DIST = torch.tensor(
            [[0.87, 0, 0, 0], [0.4, 0.299, 0.101, 0.2]], device=torch_device, dtype=torch.float
        )
        self.assertTrue(torch.allclose(filtered_dist, EXPECTED_FILTERED_DIST, atol=1e-3))

        # check edge cases with negative and extreme logits
        ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(
            batch_size, 1
        ) - (vocab_size // 2)

        # make ramp_logits more extreme
        ramp_logits[1] = ramp_logits[1] * 100.0

        # make sure at least 2 tokens are kept
        epsilon_warp = EpsilonLogitsWarper(5e-2, min_tokens_to_keep=2, filter_value=0.0)
        filtered_dist = epsilon_warp(input_ids, ramp_logits)

        # first batch should keep 3 tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
        self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [3, 2])

    def test_eta_dist_warper(self):
        input_ids = None
        vocab_size = 10
        batch_size = 2

        # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper)
        dist = torch.log(
            torch.tensor([[0.0, 0.1, 0.8, 0.1], [0.01, 0.04, 0.9, 0.05]], device=torch_device, dtype=torch.float)
        )

        eta_warp = EtaLogitsWarper(0.0625)
        filtered_dist = torch.exp(eta_warp(input_ids, dist))

        # dist should be filtered to only keep values with proba >= min(0.0625, sqrt(0.0625) * e^-H(p))
        # min(0.0625, 0.1320) is the cutoff for the first row and min(0.0625, 0.1644) is for the second
        # where H is the entropy function and p is the probability vector.
        # exp (-inf) => 0
        EXPECTED_FILTERED_DIST = torch.tensor(
            [[0.0, 0.1, 0.8, 0.1], [0.0, 0.0, 0.9, 0.0]], device=torch_device, dtype=torch.float
        )
        self.assertTrue(torch.allclose(filtered_dist, EXPECTED_FILTERED_DIST, atol=1e-3))

        # check edge cases with negative and extreme logits
        ramp_logits = torch.arange(vocab_size, device=torch_device, dtype=torch.float).unsqueeze(0).repeat(
            batch_size, 1
        ) - (vocab_size // 2)

        # make ramp_logits more extreme
        ramp_logits[1] = ramp_logits[1] * 100.0

        # make sure at least 2 tokens are kept
        eta_warp = EtaLogitsWarper(0.1, min_tokens_to_keep=2, filter_value=0.0)
        filtered_dist = eta_warp(input_ids, ramp_logits)

        # first batch should keep 2 tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2.
        self.assertListEqual((filtered_dist != 0.0).to(torch.long).sum(dim=-1).tolist(), [2, 2])

    def test_no_repeat_ngram_dist_processor(self):
        vocab_size = 3
        batch_size = 2

        input_ids = torch.tensor([[1, 1, 2, 1], [0, 1, 0, 1]], device=torch_device, dtype=torch.long)
        scores = self._get_uniform_logits(batch_size, vocab_size)

        no_repeat_proc_2_gram = NoRepeatNGramLogitsProcessor(2)
        no_repeat_proc_3_gram = NoRepeatNGramLogitsProcessor(3)

        filtered_scores_2_gram = no_repeat_proc_2_gram(input_ids, scores.clone())
        filtered_scores_3_gram = no_repeat_proc_3_gram(input_ids, scores.clone())

        # 2-gram would forbid 2nd and 3rd token (1,2) at 1st batch and 1st token (0) at 2nd batch
        self.assertListEqual(torch.isinf(filtered_scores_2_gram).tolist(), [[False, True, True], [True, False, False]])

        # 3-gram would forbid no token at 1st batch and 1st token (0) at 2nd batch
        self.assertListEqual(
            torch.isinf(filtered_scores_3_gram).tolist(), [[False, False, False], [True, False, False]]
        )

    def test_encoder_no_repeat_ngram_dist_processor(self):
        vocab_size = 3
        num_beams = 2
        batch_size = 1

        encoder_input_ids = torch.tensor([1, 2, 1, 1], device=torch_device, dtype=torch.long)

        input_ids = torch.tensor([[1, 2, 1], [8, 0, 2]], device=torch_device, dtype=torch.long)
        scores = self._get_uniform_logits(batch_size * num_beams, vocab_size)

        no_repeat_proc_2_gram = EncoderNoRepeatNGramLogitsProcessor(2, encoder_input_ids=encoder_input_ids)
        no_repeat_proc_3_gram = EncoderNoRepeatNGramLogitsProcessor(3, encoder_input_ids=encoder_input_ids)

        filtered_scores_2_gram = no_repeat_proc_2_gram(input_ids, scores.clone())
        filtered_scores_3_gram = no_repeat_proc_3_gram(input_ids, scores.clone())

        # 2-gram would forbid 1st and 2nd token at 1st beam and 1st token (0) at 2nd beam
        self.assertListEqual(torch.isinf(filtered_scores_2_gram).tolist(), [[False, True, True], [False, True, False]])

        # 3-gram would forbid 1st token at 1st beam and no token at 2nd beam
        self.assertListEqual(
            torch.isinf(filtered_scores_3_gram).tolist(), [[False, True, False], [False, False, False]]
        )

        # Batched input
        vocab_size = 3
        num_beams = 2
        batch_size = 2
        encoder_input_ids = torch.tensor([[1, 2, 1, 1], [0, 0, 2, 1]], device=torch_device, dtype=torch.long)

        input_ids = torch.tensor([[1, 2, 1], [1, 0, 2], [0, 0, 0], [0, 2, 2]], device=torch_device, dtype=torch.long)
        scores = self._get_uniform_logits(batch_size * num_beams, vocab_size)

        no_repeat_proc_2_gram = EncoderNoRepeatNGramLogitsProcessor(2, encoder_input_ids=encoder_input_ids)
        no_repeat_proc_3_gram = EncoderNoRepeatNGramLogitsProcessor(3, encoder_input_ids=encoder_input_ids)

        filtered_scores_2_gram = no_repeat_proc_2_gram(input_ids, scores.clone())
        filtered_scores_3_gram = no_repeat_proc_3_gram(input_ids, scores.clone())

        # 2gram
        # Batch 1
        #   - Beam 1: tokens (1, 2) forbidden
        #   - Beam 2: tokens (1) forbidden
        # Batch 2
        #   - Beam 1: tokens (0, 2) forbidden
        #   - Beam 2: tokens (1) forbidden
        self.assertListEqual(
            torch.isinf(filtered_scores_2_gram).tolist(),
            [[False, True, True], [False, True, False], [True, False, True], [False, True, False]],
        )

        # Batch 1
        #   - Beam 1: tokens (1) forbidden
        #   - Beam 2: tokens () forbidden
        # Batch 2
        #   - Beam 1: tokens (2) forbidden
        #   - Beam 2: tokens () forbidden
        self.assertListEqual(
            torch.isinf(filtered_scores_3_gram).tolist(),
            [[False, True, False], [False, False, False], [False, False, True], [False, False, False]],
        )

    def test_no_bad_words_dist_processor(self):
        vocab_size = 5
        batch_size = 2
        eos_token_id = 4

        input_ids = torch.tensor([[0, 1, 3, 1], [0, 1, 0, 1]], device=torch_device, dtype=torch.long)
        bad_word_tokens = [[1], [4], [1, 0], [0, 1, 2], [1, 3, 1, 3]]
        scores = self._get_uniform_logits(batch_size, vocab_size)

        no_bad_words_dist_proc = NoBadWordsLogitsProcessor(bad_words_ids=bad_word_tokens, eos_token_id=eos_token_id)

        filtered_scores = no_bad_words_dist_proc(input_ids, scores.clone())

        # batch 1: 1st, 2nd, and 4th (0, 1, 3) token are forbidden
        # batch 2: 1st, 2nd, and 3rd (0, 1, 2) token are forbidden
        # Note that 5th element cannot be forbidden as it is EOS token
        self.assertListEqual(
            torch.isinf(filtered_scores).tolist(), [[True, True, False, True, False], [True, True, True, False, False]]
        )

        # check edge case
        no_bad_words_dist_proc = NoBadWordsLogitsProcessor(bad_words_ids=[[4]], eos_token_id=eos_token_id)
        filtered_scores = no_bad_words_dist_proc(input_ids, scores.clone())
        self.assertTrue(torch.allclose(scores, filtered_scores, atol=1e-3))

    def test_bias_dist_processor(self):
        vocab_size = 5
        batch_size = 2

        input_ids = torch.tensor([[0, 1, 3, 1], [0, 1, 0, 1]], device=torch_device, dtype=torch.long)
        positive_bias = {(1,): 100.0, (4,): 100.0}
        negative_bias = {(1, 0): -100.0, (0, 1, 2): -100.0, (1, 3, 1, 3): -100.0}
        # biases the same termination twice, to ensure we can handle overlapping terminations (it won't have an effect
        # on the test cases, though)
        negative_bias.update({(1, 3, 1, 3, 1, 3): -100.0})
        sequence_bias = {**positive_bias, **negative_bias}

        # scores = 0 to facilitate checks
        scores = torch.zeros((batch_size, vocab_size), dtype=torch.float, device=torch_device)

        bias_dist_proc = SequenceBiasLogitsProcessor(sequence_bias=sequence_bias)
        filtered_scores = bias_dist_proc(input_ids, scores.clone())

        # batch 1: positive bias: tokens (1, 4); negative bias: tokens (0, 3); neutral: tokens (2)
        # batch 2: positive bias: tokens (1, 4); negative bias: tokens (0, 2); neutral: tokens (3)
        self.assertListEqual(
            filtered_scores.tolist(), [[-100.0, 100.0, 0.0, -100.0, 100.0], [-100.0, 100.0, -100.0, 0.0, 100.0]]
        )

    def test_processor_list(self):
        batch_size = 4
        sequence_length = 10
        vocab_size = 15
        eos_token_id = 0

        # dummy input_ids and scores
        input_ids = ids_tensor((batch_size, sequence_length), vocab_size)
        input_ids_comp = input_ids.clone()

        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores_comp = scores.clone()

        # instantiate all dist processors
        min_dist_proc = MinLengthLogitsProcessor(min_length=10, eos_token_id=eos_token_id)
        temp_dist_warp = TemperatureLogitsWarper(temperature=0.5)
        rep_penalty_proc = RepetitionPenaltyLogitsProcessor(penalty=2.0)
        top_k_warp = TopKLogitsWarper(3)
        top_p_warp = TopPLogitsWarper(0.8)
        no_repeat_proc = NoRepeatNGramLogitsProcessor(2)
        no_bad_words_dist_proc = NoBadWordsLogitsProcessor(bad_words_ids=[[1]], eos_token_id=eos_token_id)

        # no processor list
        scores = min_dist_proc(input_ids, scores)
        scores = temp_dist_warp(input_ids, scores)
        scores = rep_penalty_proc(input_ids, scores)
        scores = top_k_warp(input_ids, scores)
        scores = top_p_warp(input_ids, scores)
        scores = no_repeat_proc(input_ids, scores)
        scores = no_bad_words_dist_proc(input_ids, scores)

        # with processor list
        processor = LogitsProcessorList(
            [
                min_dist_proc,
                temp_dist_warp,
                rep_penalty_proc,
                top_k_warp,
                top_p_warp,
                no_repeat_proc,
                no_bad_words_dist_proc,
            ]
        )
        scores_comp = processor(input_ids, scores_comp)

        # scores should be equal
        self.assertTrue(torch.allclose(scores, scores_comp, atol=1e-3))

        # input_ids should never be changed
        self.assertListEqual(input_ids.tolist(), input_ids_comp.tolist())

    def test_prefix_constrained_logits_processor(self):
        vocab_size = 5
        batch_size = 2

        input_ids = torch.tensor([[0, 1, 3, 1], [0, 1, 0, 1]], device=torch_device, dtype=torch.long)
        scores = self._get_uniform_logits(batch_size, vocab_size)

        def prefix_allowed_tokens_fn(batch_id, inputs_ids):
            return [[0, 1], [2, 3]][batch_id]

        prefix_constrained_logits_proc = PrefixConstrainedLogitsProcessor(prefix_allowed_tokens_fn, 1)

        filtered_scores = prefix_constrained_logits_proc(input_ids, scores.clone())

        # batch 1: 1st, 2nd (0, 1) token are allowed
        # batch 2: 3rd, 4th (2, 3) token are allowed
        self.assertListEqual(
            torch.isinf(filtered_scores).tolist(), [[False, False, True, True, True], [True, True, False, False, True]]
        )

    def test_hamming_diversity(self):
        vocab_size = 4
        num_beams = 2
        num_beam_groups = 2

        scores = self._get_uniform_logits(num_beams, vocab_size)
        # batch_idx = 0 -> index batch_idx * num_beam_groups -> idx = 0 * 2 = 0 -> penalises tokens 1
        # batch_idx = 1 -> index batch_idx * num_beam_groups -> idx = 1 * 2 = 2 -> penalises tokens 1
        current_tokens = torch.tensor([0, 3, 1, 2], device=torch_device, dtype=torch.long)

        diversity_logits_processor = HammingDiversityLogitsProcessor(
            diversity_penalty=1.0, num_beams=num_beams, num_beam_groups=num_beam_groups
        )

        processed_scores = diversity_logits_processor(None, scores, current_tokens, 1)

        self.assertTrue(
            torch.allclose(
                processed_scores[0], torch.tensor([-0.7500, 0.2500, 0.2500, 0.2500], device=torch_device), atol=1e-3
            )
        )
        self.assertTrue(
            torch.allclose(
                processed_scores[1], torch.tensor([0.2500, -0.7500, 0.2500, 0.2500], device=torch_device), atol=1e-3
            )
        )

    def test_forced_bos_token_logits_processor(self):
        vocab_size = 20
        batch_size = 4
        bos_token_id = 0

        logits_processor = ForcedBOSTokenLogitsProcessor(bos_token_id=bos_token_id)

        # check that all scores are -inf except the bos_token_id score
        input_ids = ids_tensor((batch_size, 1), vocab_size=20)
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores = logits_processor(input_ids, scores)
        self.assertTrue(torch.isneginf(scores[:, bos_token_id + 1 :]).all())
        self.assertListEqual(scores[:, bos_token_id].tolist(), 4 * [0])  # score for bos_token_id shold be zero

        # check that bos_token_id is not forced if current length is greater than 1
        input_ids = ids_tensor((batch_size, 4), vocab_size=20)
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores = logits_processor(input_ids, scores)
        self.assertFalse(torch.isinf(scores).any())

    def test_forced_eos_token_logits_processor(self):
        vocab_size = 20
        batch_size = 4
        eos_token_id = 0
        max_length = 5

        logits_processor = ForcedEOSTokenLogitsProcessor(max_length=max_length, eos_token_id=eos_token_id)

        # check that all scores are -inf except the eos_token_id when max_length-1 is reached
        input_ids = ids_tensor((batch_size, 4), vocab_size=20)
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores = logits_processor(input_ids, scores)
        self.assertTrue(torch.isneginf(scores[:, eos_token_id + 1 :]).all())
        self.assertListEqual(scores[:, eos_token_id].tolist(), 4 * [0])  # score for eos_token_id should be zero

        # check that eos_token_id is not forced if max_length-1 is not reached
        input_ids = ids_tensor((batch_size, 3), vocab_size=20)
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores = logits_processor(input_ids, scores)
        self.assertFalse(torch.isinf(scores).any())

    def test_remove_nan_inf_logits_processor(self):
        scores = torch.tensor(
            [[0.0, 0.7, 0.8, float("nan")], [0.1, float("inf"), 0.3, float("-inf")]], device=torch_device
        )
        input_ids = ids_tensor((2, 4), vocab_size=20)

        logits_processor = InfNanRemoveLogitsProcessor()

        scores = logits_processor(input_ids, scores)

        self.assertTrue(
            torch.allclose(
                scores,
                torch.tensor(
                    [[0.0, 0.7, 0.8, 0.0], [0.1, torch.finfo(scores.dtype).max, 0.3, float("-inf")]],
                    device=torch_device,
                ),
                atol=1e-6,
            )
        )

    def test_exponential_decay_length_penalty(self):
        vocab_size = 20
        batch_size = 4
        eos_token_id = 0

        penalty_start = 5
        penalty_factor = 1.1

        input_ids = ids_tensor((batch_size, 2), vocab_size=vocab_size)
        input_ids_seq_length = input_ids.shape[-1]

        length_decay_processor = ExponentialDecayLengthPenalty(
            exponential_decay_length_penalty=(penalty_start, penalty_factor),
            eos_token_id=eos_token_id,
            input_ids_seq_length=input_ids_seq_length,
        )

        # check that penalty is not applied before start
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores_before_start = torch.clone(scores)  # clone scores as precessor updates them inplace
        scores_before_start = length_decay_processor(input_ids, scores_before_start)
        self.assertListEqual(scores_before_start[:, eos_token_id].tolist(), scores[:, eos_token_id].tolist())

        # check that penalty is applied after start
        input_ids = ids_tensor((batch_size, 20), vocab_size=vocab_size)
        scores = self._get_uniform_logits(batch_size, vocab_size)
        scores_after_start = torch.clone(scores)  # clone scores as precessor updates them inplace
        scores_after_start = length_decay_processor(input_ids, scores_after_start)
        self.assertTrue(torch.gt(scores_after_start[:, eos_token_id], scores[:, eos_token_id]).all())

        # check the penalty increases negative scores
        input_ids = ids_tensor((batch_size, 20), vocab_size=vocab_size)
        scores = torch.neg(self._get_uniform_logits(batch_size, vocab_size))
        scores_after_start = torch.clone(scores)  # clone scores as precessor updates them inplace
        scores_after_start = length_decay_processor(input_ids, scores_after_start)
        self.assertTrue(torch.gt(scores_after_start[:, eos_token_id], scores[:, eos_token_id]).all())

    def test_normalization(self):
        input_ids = None

        scores = torch.tensor(
            [[-23.18, -29.96, -43.54, 47.77], [-33.58, -26.87, -32.96, 22.51]], device=torch_device, dtype=torch.float
        )

        logit_normalization = LogitNormalization()
        normalized_scores = logit_normalization(input_ids, scores).exp()

        ones = torch.ones(scores.shape[0], device=torch_device, dtype=torch.float)
        self.assertTrue(normalized_scores.sum(dim=-1).allclose(ones))

        self.assertTrue(normalized_scores.allclose(scores.softmax(dim=-1)))

    def test_classifier_free_guidance(self):
        class Namespace(dict):
            pass

        logits_uncond = torch.tensor([[[1.0, 0, 1.5]]])
        logits_cond = torch.tensor([[[1.0, 1.0, 1.0]]])

        def dummy_model(input_ids, attention_mask, use_cache=True, past_key_values=None):
            out = Namespace()
            out.logits = logits_uncond
            out.past_key_values = None
            return out

        def lsm(x):
            return torch.nn.functional.log_softmax(x, dim=-1)

        # explicit unconditional prompt + attention mask
        input_ids = torch.LongTensor([[0]])
        cfg = UnbatchedClassifierFreeGuidanceLogitsProcessor(
            1.5, dummy_model, input_ids, torch.ones_like(input_ids, dtype=torch.long)
        )
        out = cfg(input_ids, logits_cond)[0, -1]

        res = (lsm(logits_uncond) + 1.5 * (lsm(logits_cond) - lsm(logits_uncond)))[0, -1]

        self.assertAlmostEqual(out[0].item(), res[0].item())
        self.assertAlmostEqual(out[1].item(), res[1].item())
        self.assertAlmostEqual(out[2].item(), res[2].item())

        # explicit unconditional prompt
        input_ids = torch.LongTensor([[0]])
        cfg = UnbatchedClassifierFreeGuidanceLogitsProcessor(1.5, dummy_model, input_ids)
        out = cfg(input_ids, logits_cond)[0, -1]

        res = (lsm(logits_uncond) + 1.5 * (lsm(logits_cond) - lsm(logits_uncond)))[0, -1]

        self.assertAlmostEqual(out[0].item(), res[0].item())
        self.assertAlmostEqual(out[1].item(), res[1].item())
        self.assertAlmostEqual(out[2].item(), res[2].item())

        # all implicit
        input_ids = torch.LongTensor([[0]])
        cfg = UnbatchedClassifierFreeGuidanceLogitsProcessor(1.5, dummy_model)
        out = cfg(input_ids, logits_cond)[0, -1]

        res = (lsm(logits_uncond) + 1.5 * (lsm(logits_cond) - lsm(logits_uncond)))[0, -1]

        self.assertAlmostEqual(out[0].item(), res[0].item())
        self.assertAlmostEqual(out[1].item(), res[1].item())
        self.assertAlmostEqual(out[2].item(), res[2].item())