File size: 15,586 Bytes
eb21a2f
 
c9cdb67
eb21a2f
 
 
c9cdb67
eb21a2f
 
 
 
 
 
 
 
c9cdb67
eb21a2f
 
 
 
 
 
 
 
 
 
c9cdb67
1b925a6
c9cdb67
eb21a2f
c9cdb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb21a2f
c9cdb67
 
 
 
eb21a2f
 
 
c9cdb67
 
 
 
 
eb21a2f
 
 
 
 
 
 
c9cdb67
eb21a2f
 
 
c9cdb67
eb21a2f
 
 
 
c9cdb67
eb21a2f
 
 
c9cdb67
 
eb21a2f
 
c9cdb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb21a2f
c9cdb67
 
 
 
eb21a2f
 
 
 
 
c9cdb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb21a2f
c9cdb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb21a2f
 
 
c9cdb67
 
 
eb21a2f
c9cdb67
 
 
 
 
 
eb21a2f
 
 
 
 
 
c9cdb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb21a2f
 
c9cdb67
 
eb21a2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9cdb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb21a2f
c9cdb67
 
 
 
 
b4f3031
c9cdb67
 
 
 
 
 
 
 
 
eb21a2f
9a1196d
 
 
 
 
 
 
 
 
 
c9cdb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb21a2f
 
c9cdb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb21a2f
 
 
c9cdb67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a1196d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
import gradio as gr
from share_btn import community_icon_html, loading_icon_html, share_js
import os 
import shutil
import re

#from huggingface_hub import snapshot_download
import numpy as np
from scipy.io import wavfile
from scipy.io.wavfile import write, read
from pydub import AudioSegment

file_upload_available = os.environ.get("ALLOW_FILE_UPLOAD")
MAX_NUMBER_SENTENCES = 10

import json
with open("characters.json", "r") as file:
    data = json.load(file)
    characters = [
        {
            "image": item["image"],
            "title": item["title"],
            "speaker": item["speaker"]
        }
        for item in data
    ]
    
from TTS.api import TTS
tts = TTS("tts_models/multilingual/multi-dataset/bark", gpu=True)

def cut_wav(input_path, max_duration):
    # Load the WAV file
    audio = AudioSegment.from_wav(input_path)
    
    # Calculate the duration of the audio
    audio_duration = len(audio) / 1000  # Convert milliseconds to seconds
    
    # Determine the duration to cut (maximum of max_duration and actual audio duration)
    cut_duration = min(max_duration, audio_duration)
    
    # Cut the audio
    cut_audio = audio[:int(cut_duration * 1000)]  # Convert seconds to milliseconds
    
    # Get the input file name without extension
    file_name = os.path.splitext(os.path.basename(input_path))[0]
    
    # Construct the output file path with the original file name and "_cut" suffix
    output_path = f"{file_name}_cut.wav"
    
    # Save the cut audio as a new WAV file
    cut_audio.export(output_path, format="wav")

    return output_path

def load_hidden(audio_in):
    return audio_in

def load_hidden_mic(audio_in):
    print("USER RECORDED A NEW SAMPLE")
    
    library_path = 'bark_voices'  
    folder_name = 'audio-0-100'  
    second_folder_name = 'audio-0-100_cleaned' 
    
    folder_path = os.path.join(library_path, folder_name)
    second_folder_path = os.path.join(library_path, second_folder_name)

    print("We need to clean previous util files, if needed:")
    if os.path.exists(folder_path):
        try:
            shutil.rmtree(folder_path)
            print(f"Successfully deleted the folder previously created from last raw recorded sample: {folder_path}")
        except OSError as e:
            print(f"Error: {folder_path} - {e.strerror}")
    else:
        print(f"OK, the folder for a raw recorded sample does not exist: {folder_path}")

    if os.path.exists(second_folder_path):
        try:
            shutil.rmtree(second_folder_path)
            print(f"Successfully deleted the folder previously created from last cleaned recorded sample: {second_folder_path}")
        except OSError as e:
            print(f"Error: {second_folder_path} - {e.strerror}")
    else:
        print(f"Ok, the folder for a cleaned recorded sample does not exist: {second_folder_path}")
    
    return audio_in

def clear_clean_ckeck():
    return False

def wipe_npz_file(folder_path):
    print("YO β€’ a user is manipulating audio inputs")
    
def split_process(audio, chosen_out_track):
    gr.Info("Cleaning your audio sample...")
    os.makedirs("out", exist_ok=True)
    write('test.wav', audio[0], audio[1])
    os.system("python3 -m demucs.separate -n mdx_extra_q -j 4 test.wav -o out")
    #return "./out/mdx_extra_q/test/vocals.wav","./out/mdx_extra_q/test/bass.wav","./out/mdx_extra_q/test/drums.wav","./out/mdx_extra_q/test/other.wav"
    if chosen_out_track == "vocals":
        print("Audio sample cleaned")
        return "./out/mdx_extra_q/test/vocals.wav"
    elif chosen_out_track == "bass":
        return "./out/mdx_extra_q/test/bass.wav"
    elif chosen_out_track == "drums":
        return "./out/mdx_extra_q/test/drums.wav"
    elif chosen_out_track == "other":
        return "./out/mdx_extra_q/test/other.wav"
    elif chosen_out_track == "all-in":
        return "test.wav"
        
def update_selection(selected_state: gr.SelectData):
    c_image = characters[selected_state.index]["image"]
    c_title = characters[selected_state.index]["title"]
    c_speaker = characters[selected_state.index]["speaker"]

    return c_title, selected_state

    
def infer(prompt, input_wav_file, clean_audio, hidden_numpy_audio):
    print("""
β€”β€”β€”β€”β€”
NEW INFERENCE:
β€”β€”β€”β€”β€”β€”β€”
    """)
    if prompt == "":
        gr.Warning("Do not forget to provide a tts prompt !")
    
    if clean_audio is True :
        print("We want to clean audio sample")
        # Extract the file name without the extension
        new_name = os.path.splitext(os.path.basename(input_wav_file))[0]
        print(f"FILE BASENAME is: {new_name}")
        if os.path.exists(os.path.join("bark_voices", f"{new_name}_cleaned")):
            print("This file has already been cleaned")
            check_name = os.path.join("bark_voices", f"{new_name}_cleaned")
            source_path = os.path.join(check_name, f"{new_name}_cleaned.wav")
        else:
            print("This file is new, we need to clean and store it")
            source_path = split_process(hidden_numpy_audio, "vocals")
        
            # Rename the file
            new_path = os.path.join(os.path.dirname(source_path), f"{new_name}_cleaned.wav")
            os.rename(source_path, new_path)
            source_path = new_path
    else :
        print("We do NOT want to clean audio sample")
        # Path to your WAV file
        source_path = input_wav_file

    # Destination directory
    destination_directory = "bark_voices"

    # Extract the file name without the extension
    file_name = os.path.splitext(os.path.basename(source_path))[0]

    # Construct the full destination directory path
    destination_path = os.path.join(destination_directory, file_name)

    # Create the new directory
    os.makedirs(destination_path, exist_ok=True)

    # Move the WAV file to the new directory
    shutil.move(source_path, os.path.join(destination_path, f"{file_name}.wav"))

    # β€”β€”β€”β€”β€”
    
    # Split the text into sentences based on common punctuation marks
    sentences = re.split(r'(?<=[.!?])\s+', prompt)

    if len(sentences) > MAX_NUMBER_SENTENCES:
        gr.Info("Your text is too long. To keep this demo enjoyable for everyone, we only kept the first 10 sentences :) Duplicate this space and set MAX_NUMBER_SENTENCES for longer texts ;)")
        # Keep only the first MAX_NUMBER_SENTENCES sentences
        first_nb_sentences = sentences[:MAX_NUMBER_SENTENCES]
    
        # Join the selected sentences back into a single string
        limited_prompt = ' '.join(first_nb_sentences)
        prompt = limited_prompt

    else:
        prompt = prompt

    gr.Info("Generating audio from prompt")
    tts.tts_to_file(text=prompt,
                file_path="output.wav",
                voice_dir="bark_voices/",
                speaker=f"{file_name}")

    # List all the files and subdirectories in the given directory
    contents = os.listdir(f"bark_voices/{file_name}")

    # Print the contents
    for item in contents:
        print(item)  
    print("Preparing final waveform video ...")
    tts_video = gr.make_waveform(audio="output.wav")
    print(tts_video)
    print("FINISHED")
    return "output.wav", tts_video, gr.update(value=f"bark_voices/{file_name}/{contents[1]}", visible=True), gr.Group.update(visible=True), destination_path

def infer_from_c(prompt, c_name):
    print("""
β€”β€”β€”β€”β€”
NEW INFERENCE:
β€”β€”β€”β€”β€”β€”β€”
    """)
    if prompt == "":
        gr.Warning("Do not forget to provide a tts prompt !")
        print("Warning about prompt sent to user")
        
    print(f"USING VOICE LIBRARY: {c_name}")
    # Split the text into sentences based on common punctuation marks
    sentences = re.split(r'(?<=[.!?])\s+', prompt)
    
    if len(sentences) > MAX_NUMBER_SENTENCES:
        gr.Info("Your text is too long. To keep this demo enjoyable for everyone, we only kept the first 10 sentences :) Duplicate this space and set MAX_NUMBER_SENTENCES for longer texts ;)")    
        # Keep only the first MAX_NUMBER_SENTENCES sentences
        first_nb_sentences = sentences[:MAX_NUMBER_SENTENCES]
    
        # Join the selected sentences back into a single string
        limited_prompt = ' '.join(first_nb_sentences)
        prompt = limited_prompt

    else:
        prompt = prompt

    
    if c_name == "":
        gr.Warning("Voice character is not properly selected. Please ensure that the name of the chosen voice is specified in the Character Name input.")
        print("Warning about Voice Name sent to user")
    else:
        print(f"Generating audio from prompt with {c_name} ;)")
        
    tts.tts_to_file(text=prompt,
                file_path="output.wav",
                voice_dir="examples/library/",
                speaker=f"{c_name}")
    
    print("Preparing final waveform video ...")
    tts_video = gr.make_waveform(audio="output.wav")
    print(tts_video)
    print("FINISHED")
    return "output.wav", tts_video, gr.update(value=f"examples/library/{c_name}/{c_name}.npz", visible=True), gr.Group.update(visible=True)


css = """
#col-container {max-width: 780px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
.mic-wrap > button {
    width: 100%;
    height: 60px;
    font-size: 1.4em!important;
}
.record-icon.svelte-1thnwz {
    display: flex;
    position: relative;
    margin-right: var(--size-2);
    width: unset;
    height: unset;
}
span.record-icon > span.dot.svelte-1thnwz {
    width: 20px!important;
    height: 20px!important;
}
.animate-spin {
  animation: spin 1s linear infinite;
}
@keyframes spin {
  from {
      transform: rotate(0deg);
  }
  to {
      transform: rotate(360deg);
  }
}
#share-btn-container {
  display: flex; 
  padding-left: 0.5rem !important; 
  padding-right: 0.5rem !important; 
  background-color: #000000; 
  justify-content: center; 
  align-items: center; 
  border-radius: 9999px !important; 
  max-width: 15rem;
  height: 36px;
}
div#share-btn-container > div {
    flex-direction: row;
    background: black;
    align-items: center;
}
#share-btn-container:hover {
  background-color: #060606;
}
#share-btn {
  all: initial; 
  color: #ffffff;
  font-weight: 600; 
  cursor:pointer; 
  font-family: 'IBM Plex Sans', sans-serif; 
  margin-left: 0.5rem !important; 
  padding-top: 0.5rem !important; 
  padding-bottom: 0.5rem !important;
  right:0;
}
#share-btn * {
  all: unset;
}
#share-btn-container div:nth-child(-n+2){
  width: auto !important;
  min-height: 0px !important;
}
#share-btn-container .wrap {
  display: none !important;
}
#share-btn-container.hidden {
  display: none!important;
}
img[src*='#center'] { 
    display: block;
    margin: auto;
}
.footer {
        margin-bottom: 45px;
        margin-top: 10px;
        text-align: center;
        border-bottom: 1px solid #e5e5e5;
    }
    .footer>p {
        font-size: .8rem;
        display: inline-block;
        padding: 0 10px;
        transform: translateY(10px);
        background: white;
    }
    .dark .footer {
        border-color: #303030;
    }
    .dark .footer>p {
        background: #0b0f19;
    }
.disclaimer {
    text-align: left;
}
.disclaimer > p {
    font-size: .8rem;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        
        gr.Markdown("""
        <h1 style="text-align: center;">Voice Cloning Demo</h1>
        """)
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(
                    label = "Text to speech prompt",
                    info = "One or two sentences at a time is better* (max: 10)",
                    placeholder = "Hello friend! How are you today?",
                    elem_id = "tts-prompt"
                )

            
            with gr.Column():
                audio_in = gr.Audio(
                    label="WAV voice to clone", 
                    type="filepath",
                    source="upload",
                    interactive = False
                )
                hidden_audio_numpy = gr.Audio(type="numpy", visible=False)
                submit_btn = gr.Button("Submit")
                
                with gr.Tab("Microphone"):
                    texts_samples = gr.Textbox(label = "Helpers", 
                                               info = "You can read out loud one of these sentences if you do not know what to record :)",
                                               value = """"Jazz, a quirky mix of groovy saxophones and wailing trumpets, echoes through the vibrant city streets."
β€”β€”β€”
"A majestic orchestra plays enchanting melodies, filling the air with harmony."
β€”β€”β€”
"The exquisite aroma of freshly baked bread wafts from a cozy bakery, enticing passersby."
β€”β€”β€”
"A thunderous roar shakes the ground as a massive jet takes off into the sky, leaving trails of white behind."
β€”β€”β€”
"Laughter erupts from a park where children play, their innocent voices rising like tinkling bells."
β€”β€”β€”
"Waves crash on the beach, and seagulls caw as they soar overhead, a symphony of nature's sounds."
β€”β€”β€”
"In the distance, a blacksmith hammers red-hot metal, the rhythmic clang punctuating the day."
β€”β€”β€”
"As evening falls, a soft hush blankets the world, crickets chirping in a soothing rhythm."
                                               """,
                                               interactive = False,
                                               lines = 5
                                              )
                    micro_in = gr.Audio(
                                label="Record voice to clone", 
                                type="filepath",
                                source="microphone",
                                interactive = True
                            )
                    clean_micro = gr.Checkbox(label="Clean sample ?", value=False)
                    micro_submit_btn = gr.Button("Submit")
                
                audio_in.upload(fn=load_hidden, inputs=[audio_in], outputs=[hidden_audio_numpy], queue=False)
                micro_in.stop_recording(fn=load_hidden_mic, inputs=[micro_in], outputs=[hidden_audio_numpy], queue=False)


            with gr.Column():
        
                cloned_out = gr.Audio(
                    label="Text to speech output",
                    visible = False
                )
        
                video_out = gr.Video(
                    label = "Waveform video",
                    elem_id = "voice-video-out"
                )
                
                npz_file = gr.File(
                    label = ".npz file",
                    visible = False
                )

                folder_path = gr.Textbox(visible=False)


        
        audio_in.change(fn=wipe_npz_file, inputs=[folder_path], queue=False)
        micro_in.clear(fn=wipe_npz_file, inputs=[folder_path], queue=False)
    submit_btn.click(
        fn = infer,
        inputs = [
            prompt,
            audio_in,
            hidden_audio_numpy
        ],
        outputs = [
            cloned_out, 
            video_out,
            npz_file,
            folder_path
        ]
    )

    micro_submit_btn.click(
        fn = infer,
        inputs = [
            prompt,
            micro_in,
            clean_micro,
            hidden_audio_numpy
        ],
        outputs = [
            cloned_out, 
            video_out,
            npz_file,
            folder_path
        ]
    )

demo.queue(api_open=False, max_size=10).launch()