File size: 9,024 Bytes
ee6e328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "\n",
    "from TTS.utils.audio import AudioProcessor\n",
    "from TTS.tts.utils.visual import plot_spectrogram\n",
    "from TTS.config import load_config\n",
    "\n",
    "import IPython.display as ipd\n",
    "import glob"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "from TTS.config.shared_configs import BaseAudioConfig\n",
    "CONFIG = BaseAudioConfig()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## ✍️ Set these values "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "data_path = \"/root/wav48_silence_trimmed/\"\n",
    "file_ext = \".flac\""
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Read audio files"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "file_paths = glob.glob(data_path + f\"/**/*{file_ext}\", recursive=True)\n",
    "\n",
    "# Change this to the index of the desired file listed below\n",
    "sample_file_index = 10\n",
    "\n",
    "SAMPLE_FILE_PATH = file_paths[sample_file_index]\n",
    "\n",
    "print(\"File list, by index:\")\n",
    "dict(enumerate(file_paths))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "Collapsed": "false"
   },
   "source": [
    "## ✍️ Set Audio Processor\n",
    "Play with the AP parameters until you find a good fit with the synthesis speech below.\n",
    "\n",
    "The default values are loaded from your config.json file, so you only need to\n",
    "uncomment and modify values below that you'd like to tune."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "tune_params={\n",
    " 'num_mels': 80,          # In general, you don't need to change this. \n",
    " 'fft_size': 2400,        # In general, you don't need to change this.\n",
    " 'frame_length_ms': 50, \n",
    " 'frame_shift_ms': 12.5,\n",
    " 'sample_rate': 48000,    # This must match the sample rate of the dataset.\n",
    " 'hop_length': None,       # In general, you don't need to change this.\n",
    " 'win_length': 1024,      # In general, you don't need to change this.\n",
    " 'preemphasis': 0.98,     # In general, 0 gives better voice recovery but makes training harder. If your model does not train, try 0.97 - 0.99.\n",
    " 'min_level_db': -100,\n",
    " 'ref_level_db': 0,       # The base DB; increase until all background noise is removed in the spectrogram, then lower until you hear better speech below.\n",
    " 'power': 1.5,            # Change this value and listen to the synthesized voice. 1.2 - 1.5 are resonable values.\n",
    " 'griffin_lim_iters': 60, # Quality does not improve for values > 60\n",
    " 'mel_fmin': 0.0,         # Adjust this and check mel-spectrogram-based voice synthesis below.\n",
    " 'mel_fmax': 8000.0,      # Adjust this and check mel-spectrogram-based voice synthesis below.\n",
    " 'do_trim_silence': True  # If you dataset has some silience at the beginning or end, this trims it. Check the AP.load_wav() below,if it causes any difference for the loaded audio file.\n",
    "}\n",
    "\n",
    "# These options have to be forced off in order to avoid errors about the \n",
    "# pre-calculated not matching the options being tuned.\n",
    "reset={\n",
    " 'signal_norm': True,  # check this if you want to test normalization parameters.\n",
    " 'stats_path': None,\n",
    " 'symmetric_norm': False,\n",
    " 'max_norm': 1,\n",
    " 'clip_norm': True,\n",
    "}\n",
    "\n",
    "# Override select parts of loaded config with parameters above\n",
    "tuned_config = CONFIG.copy()\n",
    "tuned_config.update(reset)\n",
    "tuned_config.update(tune_params)\n",
    "\n",
    "AP = AudioProcessor(**tuned_config);"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "Collapsed": "false"
   },
   "source": [
    "### Check audio loading "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "wav = AP.load_wav(SAMPLE_FILE_PATH)\n",
    "ipd.Audio(data=wav, rate=AP.sample_rate) "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "Collapsed": "false"
   },
   "source": [
    "### Generate Mel-Spectrogram and Re-synthesis with GL"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "AP.power = 1.5"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "mel = AP.melspectrogram(wav)\n",
    "print(\"Max:\", mel.max())\n",
    "print(\"Min:\", mel.min())\n",
    "print(\"Mean:\", mel.mean())\n",
    "plot_spectrogram(mel.T, AP, output_fig=True)\n",
    "\n",
    "wav_gen = AP.inv_melspectrogram(mel)\n",
    "ipd.Audio(wav_gen, rate=AP.sample_rate)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "Collapsed": "false"
   },
   "source": [
    "### Generate Linear-Spectrogram and Re-synthesis with GL"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "spec = AP.spectrogram(wav)\n",
    "print(\"Max:\", spec.max())\n",
    "print(\"Min:\", spec.min())\n",
    "print(\"Mean:\", spec.mean())\n",
    "plot_spectrogram(spec.T, AP, output_fig=True)\n",
    "\n",
    "wav_gen = AP.inv_spectrogram(spec)\n",
    "ipd.Audio(wav_gen, rate=AP.sample_rate)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "Collapsed": "false"
   },
   "source": [
    "### Compare values for a certain parameter\n",
    "\n",
    "Optimize your parameters by comparing different values per parameter at a time."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "from librosa import display\n",
    "from matplotlib import pylab as plt\n",
    "import IPython\n",
    "plt.rcParams['figure.figsize'] = (20.0, 16.0)\n",
    "\n",
    "def compare_values(attribute, values):\n",
    "    \"\"\"\n",
    "    attributes (str): the names of the attribute you like to test.\n",
    "    values (list): list of values to compare.\n",
    "    \"\"\"\n",
    "    file = SAMPLE_FILE_PATH\n",
    "    wavs = []\n",
    "    for idx, val in enumerate(values):\n",
    "        set_val_cmd = \"AP.{}={}\".format(attribute, val)\n",
    "        exec(set_val_cmd)\n",
    "        wav = AP.load_wav(file)\n",
    "        spec = AP.spectrogram(wav)\n",
    "        spec_norm = AP.denormalize(spec.T)\n",
    "        plt.subplot(len(values), 2, 2*idx + 1)\n",
    "        plt.imshow(spec_norm.T, aspect=\"auto\", origin=\"lower\")\n",
    "        #         plt.colorbar()\n",
    "        plt.tight_layout()\n",
    "        wav_gen = AP.inv_spectrogram(spec)\n",
    "        wavs.append(wav_gen)\n",
    "        plt.subplot(len(values), 2, 2*idx + 2)\n",
    "        display.waveplot(wav, alpha=0.5)\n",
    "        display.waveplot(wav_gen, alpha=0.25)\n",
    "        plt.title(\"{}={}\".format(attribute, val))\n",
    "        plt.tight_layout()\n",
    "    \n",
    "    wav = AP.load_wav(file)\n",
    "    print(\" > Ground-truth\")\n",
    "    IPython.display.display(IPython.display.Audio(wav, rate=AP.sample_rate))\n",
    "    \n",
    "    for idx, wav_gen in enumerate(wavs):\n",
    "        val = values[idx]\n",
    "        print(\" > {} = {}\".format(attribute, val))\n",
    "        IPython.display.display(IPython.display.Audio(wav_gen, rate=AP.sample_rate))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "compare_values(\"preemphasis\", [0, 0.5, 0.97, 0.98, 0.99])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "Collapsed": "false"
   },
   "outputs": [],
   "source": [
    "compare_values(\"ref_level_db\", [2, 5, 10, 15, 20, 25, 30, 35, 40, 1000])"
   ]
  }
 ],
 "metadata": {
  "interpreter": {
   "hash": "27648abe09795c3a768a281b31f7524fcf66a207e733f8ecda3a4e1fd1059fb0"
  },
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.5"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}