File size: 11,596 Bytes
8664fba
 
 
5f9c44d
8664fba
 
 
0b3117f
575c750
1783518
5f9c44d
07044da
 
 
 
575c750
 
bb94aa7
5f9c44d
8664fba
0b3117f
 
 
 
 
 
 
 
 
 
 
 
8664fba
 
0b3117f
 
 
 
 
 
 
 
 
575c750
0b3117f
 
 
 
 
 
 
 
575c750
0b3117f
575c750
0b3117f
 
 
 
 
 
 
575c750
 
 
0b3117f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
575c750
07044da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8664fba
 
 
 
 
 
 
 
 
bf0e375
8664fba
 
387c612
8664fba
 
 
 
 
 
 
 
1783518
8664fba
 
 
 
387c612
8664fba
 
387c612
8664fba
387c612
8664fba
 
 
387c612
8664fba
 
1783518
8664fba
07044da
0b3117f
 
 
 
 
 
 
575c750
 
0b3117f
575c750
 
 
 
 
 
07044da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
575c750
0b3117f
8664fba
356b0eb
8664fba
 
108bc02
0b3117f
5f9c44d
 
 
0b3117f
5f9c44d
4415138
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import gradio as gr
from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter
import config
from envs import RESULTS_REPO_ID, REPO_ID, API, HF_TOKEN
from pathlib import Path
import pandas as pd
import os
import json
from utils import parse_json_files, create_scatter_plot, create_flow_chart
from huggingface_hub import snapshot_download
from apscheduler.schedulers.background import BackgroundScheduler
from datetime import datetime
import json
import re
import markdown


def restart_space():
    API.restart_space(repo_id=REPO_ID, token=HF_TOKEN)

# New function to download results
def download_latest_results():
    print("Downloading latest results...")
    snapshot_download(RESULTS_REPO_ID, 
                    local_dir=abs_path / "evals",
                    repo_type='dataset',
                    tqdm_class=None,
                    etag_timeout=30,
                    max_workers=4,
                    )
    print("Download complete.")

abs_path = Path(__file__).parent


# load task_analyses.json from evals/usaco_traces folder
with open(os.path.join(abs_path, "evals", "usaco_traces", "task_analyses.json"), "r") as f:
    analyzed_traces = json.load(f)



def update_task_analysis(task_id):
    if task_id not in analyzed_traces:
        return "No analysis available for this task.", None, [], ""
    
    analysis = analyzed_traces[task_id]
    summary = analysis['summary']
    
    if isinstance(summary, str):
        try:
            summary = json.loads(summary)
        except json.JSONDecodeError:
            return "Error: Unable to parse summary data.", None, [], ""
    elif not isinstance(summary, dict):
        return "Error: Summary data is in an unexpected format.", None, [], ""
    
    overview = f"# Task Overview\n\n{summary.get('overview', 'No overview available.')}\n\n"
    overview += f"## Successes\n{summary.get('successes', 'No successes listed.')}\n\n"
    overview += f"## Challenges\n{summary.get('challenges', 'No challenges listed.')}\n\n"
    
    steps = [(f"Step {i+1}", i) for i in range(len(analysis['steps']))]
    
    flow_chart = create_flow_chart(analysis['steps'])
    
    return overview, flow_chart, gr.Dropdown(choices=steps, label="Agent Steps"), ""

def update_step_details(task_id, step_index):
    if task_id not in analyzed_traces:
        return "No analysis available for this task."
    
    if step_index is None:
        return "Please select a step to view details."
    
    steps = analyzed_traces[task_id]['steps']
    
    if isinstance(step_index, tuple):
        step_index = step_index[1]
    elif isinstance(step_index, str):
        step_index = int(step_index.split()[-1]) - 1
    
    if step_index < 0 or step_index >= len(steps):
        return f"Invalid step index: {step_index}"
    
    step = steps[step_index]
    analysis = step['analysis']
    
    if isinstance(analysis, str):
        try:
            analysis = json.loads(analysis)
        except json.JSONDecodeError:
            return "Error: Unable to parse step analysis data."
    elif not isinstance(analysis, dict):
        return "Error: Step analysis data is in an unexpected format."
    
    details = f"# Step {step_index + 1} Details\n\n"
    details += f"## Description\n{analysis.get('description', 'No description available.')}\n\n"
    details += f"## Assessment\n{analysis.get('assessment', 'No assessment available.')}\n\n"
    
    return details


def format_call_info(call, call_index):
    call_data = call['call_data']
    analysis = call['analysis']

    def format_json(obj):
        # if isinstance(obj, dict) and 'choices' in obj:
        #     # Special handling for message content
        #     formatted_content = format_message_content(obj['choices'][0])
        #     return f'<div class="message-content">{formatted_content}</div>'
        # else:
        json_str = json.dumps(obj, indent=2)
        json_str = json_str.replace(' ', '&nbsp;')
        json_str = json_str.replace('\n', '<br>')
        return f'<div class="json-wrapper">{json_str}</div>'

    # Currently not used but we can enable it to format message content
    def format_message_content(content):
        # Convert Markdown to HTML
        html_content = markdown.markdown(content)
        
        # Replace ``` code blocks with styled pre blocks
        html_content = re.sub(r'```python\n(.*?)```', lambda m: f'<pre class="code-block">{m.group(1)}</pre>', html_content, flags=re.DOTALL)
        
        return html_content

    formatted_info = f"""
    <style>
        .json-wrapper {{
            white-space: pre-wrap;
            word-wrap: break-word;
            font-family: monospace;
            max-height: 300px;
            overflow-y: auto;
            background-color: #f5f5f5;
            padding: 10px;
            border-radius: 5px;
        }}
        .message-content {{
            white-space: normal;
            word-wrap: break-word;
            font-family: Arial, sans-serif;
            max-height: 500px;
            overflow-y: auto;
            background-color: #ffffff;
            padding: 10px;
            border-radius: 5px;
            border: 1px solid #e0e0e0;
        }}
        .code-block {{
            background-color: #f0f0f0;
            padding: 10px;
            border-radius: 5px;
            font-family: monospace;
            white-space: pre-wrap;
            word-wrap: break-word;
        }}
    </style>

    <h2>Step {call_index+1}: {analysis.get('step_outline', 'N/A')}</h2>

    <h3>Call Metadata</h3>
    <ul>
        <li><strong>Weave Task ID:</strong> {call_data['weave_task_id']}</li>
        <li><strong>Trace ID:</strong> {call_data['trace_id']}</li>
        <li><strong>Project ID:</strong> {call_data['project_id']}</li>
        <li><strong>Created Timestamp:</strong> {datetime.fromtimestamp(call_data['created_timestamp'])}</li>
        <li><strong>Model:</strong> {call_data['inputs']['model']}</li>
    </ul>

    <h3>Inputs</h3>
    {format_json(call_data['inputs'])}

    <h3>Outputs</h3>
    {format_json(call_data['outputs'])}

    <h3>Usage</h3>
    {format_json(call_data['summary'])}

    <h3>Analysis</h3>
    <ul>
        <li><strong>Description:</strong> {analysis['description']}</li>
        <li><strong>Assessment:</strong> {analysis['assessment']}</li>
        <li><strong>Success:</strong> {analysis['success']}</li>
        <li><strong>Action Type:</strong> {analysis['action_type']}</li>
    </ul>
    """
    return formatted_info


def update_call_details(task_id, call_index):
    if task_id not in analyzed_traces or call_index is None:
        return "Please select a task and step to view details."
    
    calls = analyzed_traces[task_id]['steps']
    if isinstance(call_index, tuple):
        call_index = call_index[1]
    
    if call_index < 0 or call_index >= len(calls):
        return f"Invalid call index: {call_index}"
    
    call = calls[call_index]
    return format_call_info(call, call_index)



with gr.Blocks() as demo:
    gr.Markdown("""
    # 🥇 Agent Leaderboard
    """)
    
    with gr.Tabs():
        with gr.Tab("SWE-Bench"):
            with gr.Row():
                with gr.Column(scale=1):
                    scatter_plot = gr.Plot(create_scatter_plot(parse_json_files(os.path.join(abs_path, "evals"), 'swebench_lite'), "results_total_cost", "results_accuracy", "Cost (in USD)", "Accuracy", ["agent_name"]))
                with gr.Column(scale=1):
                    Leaderboard(
                        value=parse_json_files(os.path.join(abs_path, "evals"), 'swebench_lite'),
                        select_columns=SelectColumns(
                            default_selection=config.SWEBENCH_ON_LOAD_COLUMNS,
                            cant_deselect=["agent_name"],
                            label="Select Columns to Display:",
                        ),
                        search_columns=config.SWEBENCH_SEARCH_COLUMNS,
                        column_widths={"agent_name": 40,
                                       "results_accuracy": 20,
                                       "results_total_cost": 20},
                    )
        with gr.Tab("USACO"):
            with gr.Row():
                with gr.Column(scale=1):
                    scatter_plot = gr.Plot(create_scatter_plot(parse_json_files(os.path.join(abs_path, "evals"), 'usaco'), "results_total_cost", "results_accuracy", "Cost", "Accuracy", ["agent_name"]))
                with gr.Column(scale=1):
                    Leaderboard(
                        value=parse_json_files(os.path.join(abs_path, "evals"), 'usaco'),
                        select_columns=SelectColumns(
                            default_selection=config.USACO_ON_LOAD_COLUMNS,
                            cant_deselect=["agent_name"],
                            label="Select Columns to Display:",
                        ),
                        search_columns=config.USACO_SEARCH_COLUMNS,
                        column_widths={"agent_name": 40,
                                       "results_accuracy": 20,
                                       "results_total_cost": 20},
                    )
            gr.Markdown("## Agent Monitor")
            with gr.Row():
                with gr.Column(scale=1):
                    task_dropdown = gr.Dropdown(choices=list(analyzed_traces.keys()), label="Select USACO Task")
                    task_overview = gr.Markdown()
                with gr.Column(scale=1):
                    steps_dropdown = gr.Dropdown(label="Agent Steps")
                    step_details = gr.Markdown()
            with gr.Row():
                flow_chart = gr.Plot(label="Task Flow")
            
            task_dropdown.change(update_task_analysis, 
                                inputs=[task_dropdown], 
                                outputs=[task_overview, flow_chart, steps_dropdown, step_details])
            steps_dropdown.change(update_step_details, 
                                inputs=[task_dropdown, steps_dropdown], 
                                outputs=[step_details])
            
            gr.Markdown("## Raw Predictions")
            with gr.Row():
                with gr.Column(scale=1):
                    task_dropdown = gr.Dropdown(choices=list(analyzed_traces.keys()), label="Select USACO Task")
                with gr.Column(scale=1):
                    call_dropdown = gr.Dropdown(label="Select Call")
            
            with gr.Row():
                call_details = gr.HTML()
            
            def update_call_dropdown(task_id):
                calls = analyzed_traces.get(task_id, [])
                return gr.Dropdown(choices=[(f"Call {i+1}", i) for i in range(len(calls))])
            
            task_dropdown.change(update_call_dropdown, 
                                inputs=[task_dropdown], 
                                outputs=[call_dropdown])
            call_dropdown.change(update_call_details, 
                                inputs=[task_dropdown, call_dropdown], 
                                outputs=[call_details])

        
        with gr.Tab("About"):
            gr.Markdown((Path(__file__).parent / "about.md").read_text())

if __name__ == "__main__":
    # Download the results from the Hugging Face Hub
    download_latest_results()
    
    scheduler = BackgroundScheduler()
    scheduler.add_job(restart_space, "interval", hours=1) # restarted every 1h
    scheduler.add_job(download_latest_results, "interval", hours=1) # download latest results every 1h
    scheduler.start()
    demo.launch()