Spaces:
Running
Running
File size: 11,596 Bytes
8664fba 5f9c44d 8664fba 0b3117f 575c750 1783518 5f9c44d 07044da 575c750 bb94aa7 5f9c44d 8664fba 0b3117f 8664fba 0b3117f 575c750 0b3117f 575c750 0b3117f 575c750 0b3117f 575c750 0b3117f 575c750 07044da 8664fba bf0e375 8664fba 387c612 8664fba 1783518 8664fba 387c612 8664fba 387c612 8664fba 387c612 8664fba 387c612 8664fba 1783518 8664fba 07044da 0b3117f 575c750 0b3117f 575c750 07044da 575c750 0b3117f 8664fba 356b0eb 8664fba 108bc02 0b3117f 5f9c44d 0b3117f 5f9c44d 4415138 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import gradio as gr
from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter
import config
from envs import RESULTS_REPO_ID, REPO_ID, API, HF_TOKEN
from pathlib import Path
import pandas as pd
import os
import json
from utils import parse_json_files, create_scatter_plot, create_flow_chart
from huggingface_hub import snapshot_download
from apscheduler.schedulers.background import BackgroundScheduler
from datetime import datetime
import json
import re
import markdown
def restart_space():
API.restart_space(repo_id=REPO_ID, token=HF_TOKEN)
# New function to download results
def download_latest_results():
print("Downloading latest results...")
snapshot_download(RESULTS_REPO_ID,
local_dir=abs_path / "evals",
repo_type='dataset',
tqdm_class=None,
etag_timeout=30,
max_workers=4,
)
print("Download complete.")
abs_path = Path(__file__).parent
# load task_analyses.json from evals/usaco_traces folder
with open(os.path.join(abs_path, "evals", "usaco_traces", "task_analyses.json"), "r") as f:
analyzed_traces = json.load(f)
def update_task_analysis(task_id):
if task_id not in analyzed_traces:
return "No analysis available for this task.", None, [], ""
analysis = analyzed_traces[task_id]
summary = analysis['summary']
if isinstance(summary, str):
try:
summary = json.loads(summary)
except json.JSONDecodeError:
return "Error: Unable to parse summary data.", None, [], ""
elif not isinstance(summary, dict):
return "Error: Summary data is in an unexpected format.", None, [], ""
overview = f"# Task Overview\n\n{summary.get('overview', 'No overview available.')}\n\n"
overview += f"## Successes\n{summary.get('successes', 'No successes listed.')}\n\n"
overview += f"## Challenges\n{summary.get('challenges', 'No challenges listed.')}\n\n"
steps = [(f"Step {i+1}", i) for i in range(len(analysis['steps']))]
flow_chart = create_flow_chart(analysis['steps'])
return overview, flow_chart, gr.Dropdown(choices=steps, label="Agent Steps"), ""
def update_step_details(task_id, step_index):
if task_id not in analyzed_traces:
return "No analysis available for this task."
if step_index is None:
return "Please select a step to view details."
steps = analyzed_traces[task_id]['steps']
if isinstance(step_index, tuple):
step_index = step_index[1]
elif isinstance(step_index, str):
step_index = int(step_index.split()[-1]) - 1
if step_index < 0 or step_index >= len(steps):
return f"Invalid step index: {step_index}"
step = steps[step_index]
analysis = step['analysis']
if isinstance(analysis, str):
try:
analysis = json.loads(analysis)
except json.JSONDecodeError:
return "Error: Unable to parse step analysis data."
elif not isinstance(analysis, dict):
return "Error: Step analysis data is in an unexpected format."
details = f"# Step {step_index + 1} Details\n\n"
details += f"## Description\n{analysis.get('description', 'No description available.')}\n\n"
details += f"## Assessment\n{analysis.get('assessment', 'No assessment available.')}\n\n"
return details
def format_call_info(call, call_index):
call_data = call['call_data']
analysis = call['analysis']
def format_json(obj):
# if isinstance(obj, dict) and 'choices' in obj:
# # Special handling for message content
# formatted_content = format_message_content(obj['choices'][0])
# return f'<div class="message-content">{formatted_content}</div>'
# else:
json_str = json.dumps(obj, indent=2)
json_str = json_str.replace(' ', ' ')
json_str = json_str.replace('\n', '<br>')
return f'<div class="json-wrapper">{json_str}</div>'
# Currently not used but we can enable it to format message content
def format_message_content(content):
# Convert Markdown to HTML
html_content = markdown.markdown(content)
# Replace ``` code blocks with styled pre blocks
html_content = re.sub(r'```python\n(.*?)```', lambda m: f'<pre class="code-block">{m.group(1)}</pre>', html_content, flags=re.DOTALL)
return html_content
formatted_info = f"""
<style>
.json-wrapper {{
white-space: pre-wrap;
word-wrap: break-word;
font-family: monospace;
max-height: 300px;
overflow-y: auto;
background-color: #f5f5f5;
padding: 10px;
border-radius: 5px;
}}
.message-content {{
white-space: normal;
word-wrap: break-word;
font-family: Arial, sans-serif;
max-height: 500px;
overflow-y: auto;
background-color: #ffffff;
padding: 10px;
border-radius: 5px;
border: 1px solid #e0e0e0;
}}
.code-block {{
background-color: #f0f0f0;
padding: 10px;
border-radius: 5px;
font-family: monospace;
white-space: pre-wrap;
word-wrap: break-word;
}}
</style>
<h2>Step {call_index+1}: {analysis.get('step_outline', 'N/A')}</h2>
<h3>Call Metadata</h3>
<ul>
<li><strong>Weave Task ID:</strong> {call_data['weave_task_id']}</li>
<li><strong>Trace ID:</strong> {call_data['trace_id']}</li>
<li><strong>Project ID:</strong> {call_data['project_id']}</li>
<li><strong>Created Timestamp:</strong> {datetime.fromtimestamp(call_data['created_timestamp'])}</li>
<li><strong>Model:</strong> {call_data['inputs']['model']}</li>
</ul>
<h3>Inputs</h3>
{format_json(call_data['inputs'])}
<h3>Outputs</h3>
{format_json(call_data['outputs'])}
<h3>Usage</h3>
{format_json(call_data['summary'])}
<h3>Analysis</h3>
<ul>
<li><strong>Description:</strong> {analysis['description']}</li>
<li><strong>Assessment:</strong> {analysis['assessment']}</li>
<li><strong>Success:</strong> {analysis['success']}</li>
<li><strong>Action Type:</strong> {analysis['action_type']}</li>
</ul>
"""
return formatted_info
def update_call_details(task_id, call_index):
if task_id not in analyzed_traces or call_index is None:
return "Please select a task and step to view details."
calls = analyzed_traces[task_id]['steps']
if isinstance(call_index, tuple):
call_index = call_index[1]
if call_index < 0 or call_index >= len(calls):
return f"Invalid call index: {call_index}"
call = calls[call_index]
return format_call_info(call, call_index)
with gr.Blocks() as demo:
gr.Markdown("""
# 🥇 Agent Leaderboard
""")
with gr.Tabs():
with gr.Tab("SWE-Bench"):
with gr.Row():
with gr.Column(scale=1):
scatter_plot = gr.Plot(create_scatter_plot(parse_json_files(os.path.join(abs_path, "evals"), 'swebench_lite'), "results_total_cost", "results_accuracy", "Cost (in USD)", "Accuracy", ["agent_name"]))
with gr.Column(scale=1):
Leaderboard(
value=parse_json_files(os.path.join(abs_path, "evals"), 'swebench_lite'),
select_columns=SelectColumns(
default_selection=config.SWEBENCH_ON_LOAD_COLUMNS,
cant_deselect=["agent_name"],
label="Select Columns to Display:",
),
search_columns=config.SWEBENCH_SEARCH_COLUMNS,
column_widths={"agent_name": 40,
"results_accuracy": 20,
"results_total_cost": 20},
)
with gr.Tab("USACO"):
with gr.Row():
with gr.Column(scale=1):
scatter_plot = gr.Plot(create_scatter_plot(parse_json_files(os.path.join(abs_path, "evals"), 'usaco'), "results_total_cost", "results_accuracy", "Cost", "Accuracy", ["agent_name"]))
with gr.Column(scale=1):
Leaderboard(
value=parse_json_files(os.path.join(abs_path, "evals"), 'usaco'),
select_columns=SelectColumns(
default_selection=config.USACO_ON_LOAD_COLUMNS,
cant_deselect=["agent_name"],
label="Select Columns to Display:",
),
search_columns=config.USACO_SEARCH_COLUMNS,
column_widths={"agent_name": 40,
"results_accuracy": 20,
"results_total_cost": 20},
)
gr.Markdown("## Agent Monitor")
with gr.Row():
with gr.Column(scale=1):
task_dropdown = gr.Dropdown(choices=list(analyzed_traces.keys()), label="Select USACO Task")
task_overview = gr.Markdown()
with gr.Column(scale=1):
steps_dropdown = gr.Dropdown(label="Agent Steps")
step_details = gr.Markdown()
with gr.Row():
flow_chart = gr.Plot(label="Task Flow")
task_dropdown.change(update_task_analysis,
inputs=[task_dropdown],
outputs=[task_overview, flow_chart, steps_dropdown, step_details])
steps_dropdown.change(update_step_details,
inputs=[task_dropdown, steps_dropdown],
outputs=[step_details])
gr.Markdown("## Raw Predictions")
with gr.Row():
with gr.Column(scale=1):
task_dropdown = gr.Dropdown(choices=list(analyzed_traces.keys()), label="Select USACO Task")
with gr.Column(scale=1):
call_dropdown = gr.Dropdown(label="Select Call")
with gr.Row():
call_details = gr.HTML()
def update_call_dropdown(task_id):
calls = analyzed_traces.get(task_id, [])
return gr.Dropdown(choices=[(f"Call {i+1}", i) for i in range(len(calls))])
task_dropdown.change(update_call_dropdown,
inputs=[task_dropdown],
outputs=[call_dropdown])
call_dropdown.change(update_call_details,
inputs=[task_dropdown, call_dropdown],
outputs=[call_details])
with gr.Tab("About"):
gr.Markdown((Path(__file__).parent / "about.md").read_text())
if __name__ == "__main__":
# Download the results from the Hugging Face Hub
download_latest_results()
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", hours=1) # restarted every 1h
scheduler.add_job(download_latest_results, "interval", hours=1) # download latest results every 1h
scheduler.start()
demo.launch() |