File size: 15,380 Bytes
8664fba
 
 
5f9c44d
8664fba
 
 
0b3117f
5cbaf0e
ca89148
 
1783518
5f9c44d
07044da
 
 
 
ca89148
 
066588c
 
 
 
 
575c750
eb2a754
575c750
bb94aa7
5f9c44d
8664fba
0b3117f
 
 
 
eb2a754
0b3117f
 
 
 
 
 
 
8664fba
f9140ad
 
5cbaf0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f9140ad
 
 
0b3117f
ca89148
 
066588c
ca89148
 
0b3117f
ca89148
 
066588c
0b3117f
ca89148
 
 
0b3117f
f9140ad
ca89148
 
0b3117f
ca89148
066588c
 
0b3117f
066588c
ca89148
 
 
 
0b3117f
f9140ad
ca89148
 
0b3117f
ca89148
066588c
0b3117f
066588c
 
 
 
0b3117f
ca89148
0b3117f
ca89148
0b3117f
575c750
ca89148
 
 
07044da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8946d7b
07044da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8664fba
 
 
 
 
 
 
 
066588c
8664fba
ca89148
8664fba
387c612
066588c
8664fba
 
387c612
066588c
 
 
8664fba
066588c
 
07044da
0b3117f
 
ca89148
066588c
 
 
 
575c750
 
ca89148
 
3e874db
ca89148
 
 
 
 
 
 
 
07044da
 
 
 
ca89148
07044da
ca89148
 
 
07044da
 
ca89148
07044da
ca89148
f9140ad
ca89148
 
 
 
 
 
 
f9140ad
ca89148
 
 
8946d7b
ca89148
 
f9140ad
ca89148
 
 
 
 
 
 
 
 
 
3e874db
ca89148
 
 
 
 
 
 
 
 
 
 
 
 
8946d7b
ca89148
 
 
221fb8a
 
 
eb2a754
221fb8a
 
 
eb2a754
066588c
221fb8a
 
eb2a754
066588c
 
 
221fb8a
eb2a754
 
0b3117f
8664fba
356b0eb
8664fba
ca89148
 
 
 
 
f9140ad
 
 
108bc02
ca89148
 
 
 
5f9c44d
ca89148
 
 
 
5f9c44d
ca89148
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import gradio as gr
from gradio_leaderboard import Leaderboard, SelectColumns, ColumnFilter
import config
from envs import RESULTS_REPO_ID, REPO_ID, API, HF_TOKEN
from pathlib import Path
import pandas as pd
import os
import json
from utils.data import parse_json_files
from utils.viz import create_scatter_plot, create_flow_chart
from utils.processing import check_and_process_uploads
from huggingface_hub import snapshot_download
from apscheduler.schedulers.background import BackgroundScheduler
from datetime import datetime
import json
import re
import markdown
import asyncio
from apscheduler.schedulers.asyncio import AsyncIOScheduler
import weave


from datetime import datetime
weave.init(f'leaderboard_testing_{datetime.now().strftime("%Y%m%d%H%M%S")}')

abs_path = Path(__file__).parent

def restart_space():
    API.restart_space(repo_id=REPO_ID, token=HF_TOKEN)

# New function to download results
def download_latest_results():
    print("Downloading latest results...")
    snapshot_download(RESULTS_REPO_ID, 
                    local_dir= "evals_upload",
                    repo_type='dataset',
                    tqdm_class=None,
                    etag_timeout=30,
                    max_workers=4,
                    )
    print("Download complete.")


# Global variable to store preprocessed data
preprocessed_traces = {}
def preprocess_traces():
    global preprocessed_traces
    processed_dir = Path("evals_live")
    for file in processed_dir.glob('*.json'):
        try:
            with open(file, 'r') as f:
                data = json.load(f)
                agent_name = data['config']['agent_name']
                benchmark_name = data['config']['benchmark_name']
                if benchmark_name not in preprocessed_traces:
                    preprocessed_traces[benchmark_name] = {}

                assert type(data['raw_logging_results']) == dict, f"Invalid format for raw_logging_results: {type(data['raw_logging_results'])}"
                preprocessed_traces[benchmark_name][agent_name] = data['raw_logging_results']
        except AssertionError as e:
            preprocessed_traces[benchmark_name][agent_name] = None
        except Exception as e:
            print(f"Error preprocessing {file}: {e}")
            preprocessed_traces[benchmark_name][agent_name] = None

def get_analyzed_traces(agent_name, benchmark_name):
    return preprocessed_traces.get(benchmark_name, {}).get(agent_name)

def update_agent_dropdown(benchmark_name, metric):
    df = parse_json_files(os.path.join(abs_path, "evals_live"), benchmark_name)
    agents = df['Agent Name'].tolist()
    best_agent = get_best_agent(benchmark_name, metric)
    return gr.Dropdown(choices=agents, value=best_agent, label="Select Agent")

def get_best_agent(benchmark_name, metric):
    df = parse_json_files(os.path.join(abs_path, "evals_live"), benchmark_name)
    return df.loc[df[metric].idxmax()]['Agent Name']

def update_task_analysis(benchmark_name, agent_name):
    if not agent_name:
        return "Please select an agent.", None, None, ""
    
    analyzed_traces = get_analyzed_traces(agent_name, benchmark_name)
    if not analyzed_traces:
        return f"No analysis available for agent: {agent_name}", None, None, ""
    
    task_ids = list(analyzed_traces.keys())

    overview, flow_chart, _ = update_task_details(benchmark_name, agent_name, task_ids[0])
    
    return overview, flow_chart, gr.Dropdown(choices=task_ids, value=task_ids[0], label="Select Task"), ""

def update_task_details(benchmark_name, agent_name, task_id):
    if not task_id:
        return "Please select a task.", None, ""
    
    analyzed_traces = get_analyzed_traces(agent_name, benchmark_name)
    if not analyzed_traces or task_id not in analyzed_traces:
        return f"No analysis available for task: {task_id}", None, ""
    
    analysis = analyzed_traces[task_id]
    summary = analysis.get('task_analysis', {})
    
    overview = f"## Task Overview\n\n{summary.get('overview', 'No overview available.')}\n\n"
    overview += f"### Successes\n{summary.get('key_successes', 'No successes listed.')}\n\n"
    overview += f"### Challenges\n{summary.get('main_challenges', 'No challenges listed.')}\n\n"
    overview += f"### Overall Assessment\n{summary.get('overall_assessment', 'No assessment available.')}\n\n"
    
    flow_chart = create_flow_chart(analysis['steps'])
    
    return overview, flow_chart, ""


def format_call_info(step, step_index):
    call_data = step['call_data']
    analysis = step['analysis']

    def format_json(obj):
        # if isinstance(obj, dict) and 'choices' in obj:
        #     # Special handling for message content
        #     formatted_content = format_message_content(obj['choices'][0])
        #     return f'<div class="message-content">{formatted_content}</div>'
        # else:
        json_str = json.dumps(obj, indent=2)
        json_str = json_str.replace(' ', '&nbsp;')
        json_str = json_str.replace('\n', '<br>')
        return f'<div class="json-wrapper">{json_str}</div>'

    # Currently not used but we can enable it to format message content
    def format_message_content(content):
        # Convert Markdown to HTML
        html_content = markdown.markdown(content)
        
        # Replace ``` code blocks with styled pre blocks
        html_content = re.sub(r'```python\n(.*?)```', lambda m: f'<pre class="code-block">{m.group(1)}</pre>', html_content, flags=re.DOTALL)
        
        return html_content

    formatted_info = f"""
    <style>
        .json-wrapper {{
            white-space: pre-wrap;
            word-wrap: break-word;
            font-family: monospace;
            max-height: 300px;
            overflow-y: auto;
            background-color: #f5f5f5;
            padding: 10px;
            border-radius: 5px;
        }}
        .message-content {{
            white-space: normal;
            word-wrap: break-word;
            font-family: Arial, sans-serif;
            max-height: 500px;
            overflow-y: auto;
            background-color: #ffffff;
            padding: 10px;
            border-radius: 5px;
            border: 1px solid #e0e0e0;
        }}
        .code-block {{
            background-color: #f0f0f0;
            padding: 10px;
            border-radius: 5px;
            font-family: monospace;
            white-space: pre-wrap;
            word-wrap: break-word;
        }}
    </style>

    <h2>Step {step_index + 1}: {analysis.get('headline', '')}</h2>

    <h3>Call Metadata</h3>
    <ul>
        <li><strong>Weave Task ID:</strong> {call_data['weave_task_id']}</li>
        <li><strong>Trace ID:</strong> {call_data['trace_id']}</li>
        <li><strong>Project ID:</strong> {call_data['project_id']}</li>
        <li><strong>Created Timestamp:</strong> {datetime.fromtimestamp(call_data['created_timestamp'])}</li>
        <li><strong>Model:</strong> {call_data['inputs']['model']}</li>
    </ul>

    <h3>Inputs</h3>
    {format_json(call_data['inputs'])}

    <h3>Outputs</h3>
    {format_json(call_data['outputs'])}

    <h3>Usage</h3>
    {format_json(call_data['summary'])}

    <h3>Analysis</h3>
    <ul>
        <li><strong>Description:</strong> {analysis['description']}</li>
        <li><strong>Assessment:</strong> {analysis['assessment']}</li>
        <li><strong>Success:</strong> {analysis['success']}</li>
        <li><strong>Action Type:</strong> {analysis['action_type']}</li>
    </ul>
    """
    return formatted_info


with gr.Blocks() as demo:
    gr.Markdown("""
    # 🥇 Agent Leaderboard
    """)
    
    with gr.Tabs():
        with gr.Tab("USACO"):
            with gr.Row():
                with gr.Column(scale=2):
                    Leaderboard(
                        value=parse_json_files(os.path.join(abs_path, "evals_live"), 'usaco'),
                        select_columns=SelectColumns(
                            default_selection=config.USACO_ON_LOAD_COLUMNS,
                            cant_deselect=["Agent Name"],
                            label="Select Columns to Display:",
                        ),
                        search_columns=config.USACO_SEARCH_COLUMNS,
                        column_widths={"Agent Name": 40,
                                       "Accuracy": 20,
                                       "Total Cost": 20},
                    )
            with gr.Row():
                scatter_plot = gr.Plot(create_scatter_plot(parse_json_files(os.path.join(abs_path, "evals_live"), 'usaco'), "Total Cost", "Accuracy", "Total Cost (in USD)", "Accuracy", ["Agent Name"]))
            gr.Markdown("## Agent Monitor")
            with gr.Row():
                with gr.Column(scale=1):
                    agent_dropdown = gr.Dropdown(label="Select Agent")
                with gr.Column(scale=1):
                    task_dropdown = gr.Dropdown(label="Select USACO Task")
            with gr.Row():
                task_overview = gr.Markdown()
            with gr.Row():
                flow_chart = gr.Plot(label="Task Flow")

            # Initialize the agent dropdown with the best agent
            demo.load(update_agent_dropdown, inputs=[gr.Textbox(value="usaco", visible=False), gr.Textbox(value="Accuracy", visible=False)], outputs=[agent_dropdown])
            demo.load(update_task_analysis, inputs=[gr.Textbox(value="usaco", visible=False), agent_dropdown], outputs=[task_overview, flow_chart, task_dropdown, gr.Textbox(visible=False)])

            agent_dropdown.change(update_task_analysis, 
                                  inputs=[gr.Textbox(value="usaco", visible=False), agent_dropdown],
                                  outputs=[task_overview, flow_chart, task_dropdown, gr.Textbox(visible=False)])
            task_dropdown.change(update_task_details,
                                 inputs=[gr.Textbox(value="usaco", visible=False), agent_dropdown, task_dropdown],
                                 outputs=[task_overview, flow_chart, gr.Textbox(visible=False)])
            
            gr.Markdown("## Raw Predictions")
            with gr.Row():
                with gr.Column(scale=1):
                    raw_agent_dropdown = gr.Dropdown(label="Select Agent")
                with gr.Column(scale=1):
                    raw_task_dropdown = gr.Dropdown(label="Select Task")
                with gr.Column(scale=1):
                    raw_step_dropdown = gr.Dropdown(label="Select Step")
            
            with gr.Row():
                raw_call_details = gr.HTML()
            
            def update_raw_task_dropdown(agent_name):
                analyzed_traces = get_analyzed_traces(agent_name, "usaco")
                if not analyzed_traces:
                    return gr.Dropdown(choices=[], label="Select Task"), gr.Dropdown(choices=[], label="Select Step"), f"No raw predictions data available for agent: {agent_name}."
                task_ids = list(analyzed_traces.keys())
                steps = analyzed_traces[task_ids[0]]['steps']
                return gr.Dropdown(choices=task_ids, label="Select Task", value=task_ids[0]), gr.Dropdown(choices=[(f"Step {i+1}", i) for i in range(len(steps))], label="Select Step", value=0), update_raw_call_details(agent_name, task_ids[0], 0)

            def update_raw_step_dropdown(agent_name, task_id):
                analyzed_traces = get_analyzed_traces(agent_name, "usaco")
                if not analyzed_traces or task_id not in analyzed_traces:
                    return gr.Dropdown(choices=[], label="Select Step", value="No data available.")
                steps = analyzed_traces[task_id]['steps']
                return gr.Dropdown(choices=[(f"Step {i+1}", i) for i in range(len(steps))], label="Select Step", value=0), format_call_info(steps[0], 0)

            def update_raw_call_details(agent_name, task_id, step_index):
                analyzed_traces = get_analyzed_traces(agent_name, "usaco")
                if not analyzed_traces or task_id not in analyzed_traces:
                    return "No data available for this selection."
                steps = analyzed_traces[task_id]['steps']
                if step_index is None:
                    return "Invalid step selection."
                step = steps[step_index]
                return format_call_info(step, step_index)

            # Initialize the raw agent dropdown with all agents
            demo.load(update_agent_dropdown, 
                    inputs=[gr.Textbox(value="usaco", visible=False), gr.Textbox(value="Accuracy", visible=False)], 
                    outputs=[raw_agent_dropdown])
            demo.load(update_raw_task_dropdown,
                    inputs=[raw_agent_dropdown],
                    outputs=[raw_task_dropdown, raw_step_dropdown])
            demo.load(update_raw_call_details,
                    inputs=[raw_agent_dropdown, raw_task_dropdown, raw_step_dropdown],
                    outputs=[raw_call_details])

            raw_agent_dropdown.change(update_raw_task_dropdown, 
                                    inputs=[raw_agent_dropdown], 
                                    outputs=[raw_task_dropdown, raw_step_dropdown, raw_call_details])
            raw_task_dropdown.change(update_raw_step_dropdown, 
                                    inputs=[raw_agent_dropdown, raw_task_dropdown], 
                                    outputs=[raw_step_dropdown, raw_call_details])
            raw_step_dropdown.change(update_raw_call_details, 
                                    inputs=[raw_agent_dropdown, raw_task_dropdown, raw_step_dropdown], 
                                    outputs=[raw_call_details])
        
        with gr.Tab("SWE-Bench"):
            with gr.Row():
                with gr.Column(scale=2):
                    Leaderboard(
                        value=parse_json_files(os.path.join(abs_path, "evals_live"), 'swebench_lite'),
                        select_columns=SelectColumns(
                            default_selection=config.USACO_ON_LOAD_COLUMNS,
                            cant_deselect=["Agent Name"],
                            label="Select Columns to Display:",
                        ),
                        search_columns=config.USACO_SEARCH_COLUMNS,
                        column_widths={"Agent Name": 40,
                                       "Accuracy": 20,
                                       "Total Cost": 20},
                    )
            with gr.Row():
                scatter_plot = gr.Plot(create_scatter_plot(parse_json_files(os.path.join(abs_path, "evals_live"), 'swebench_lite'), "Total Cost", "Accuracy", "Total Cost (in USD)", "Accuracy", ["Agent Name"]))
        
        with gr.Tab("About"):
            gr.Markdown((Path(__file__).parent / "about.md").read_text())





async def main():
    # Preprocess traces
    preprocess_traces()
    
    # Download the results from the Hugging Face Hub
    await asyncio.to_thread(download_latest_results)

    # Check for new uploads and process them
    await check_and_process_uploads()
    
    scheduler = AsyncIOScheduler()
    scheduler.add_job(restart_space, "interval", hours=1)
    scheduler.add_job(download_latest_results, "interval", hours=1)
    scheduler.add_job(check_and_process_uploads, "interval", hours=1)
    scheduler.start()
    
    await demo.launch()

if __name__ == "__main__":
    asyncio.run(main())