Spaces:
Running
Running
File size: 25,835 Bytes
8664fba ca89148 4415138 575c750 de321fc 8664fba 47280b7 de321fc 9250161 47280b7 9250161 de321fc 0457e8e de321fc 9250161 de321fc 47280b7 de321fc 47280b7 de321fc 47280b7 de321fc 47280b7 de321fc 47280b7 5a7e21a e24146f 5a7e21a e24146f 5a7e21a e24146f 5a7e21a e24146f 5a7e21a 8664fba de321fc 4415138 de321fc 4415138 de321fc 31677d7 4415138 de321fc 4415138 8664fba de321fc cd69490 de321fc cd69490 de321fc cd69490 de321fc 8664fba de321fc 575c750 de321fc 575c750 e59dbdb 6102327 575c750 e59dbdb 575c750 e59dbdb 6102327 fda0adb 575c750 fda0adb 575c750 e59dbdb 575c750 a30f956 575c750 e59dbdb e24146f 575c750 e59dbdb 575c750 a30f956 575c750 a30f956 e59dbdb a30f956 e59dbdb a30f956 575c750 a30f956 575c750 ad4ec76 a30f956 575c750 a30f956 575c750 ad4ec76 575c750 8664fba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 |
import json
import plotly.express as px
from utils.pareto import Agent, compute_pareto_frontier
import plotly.graph_objects as go
import textwrap
import numpy as np
import pandas as pd
from scipy import stats
def create_leaderboard(df, ci_metrics = None):
# cast dtypes to string
df = df.astype(str)
# for each metric join metric and metric CI columns
if ci_metrics:
for metric in ci_metrics:
CI_metric = metric + ' CI'
# for rows in the df for which CI metric is not None, join the metric and CI columns by looping through the CI metrics columns
for i, row in df.iterrows():
if str(row[CI_metric]) != 'None':
df.at[i, metric] = str(row[metric]) + " (" + str(row[CI_metric]) + ")"
return df
def create_task_success_heatmap(df, benchmark_name):
# Calculate agent accuracy
agent_accuracy = df.groupby('Agent Name')['Success'].mean().sort_values(ascending=False)
# Calculate task success rate
task_success_rate = df.groupby('Task ID')['Success'].mean().sort_values(ascending=False)
# Pivot the dataframe to create a matrix of agents vs tasks
pivot_df = df.pivot(index='Agent Name', columns='Task ID', values='Success')
# Sort the pivot table
pivot_df = pivot_df.reindex(index=agent_accuracy.index, columns=task_success_rate.index)
# Calculate tasks solved across all agents
tasks_solved = (pivot_df.sum(axis=0) > 0).astype(int)
# Total number of tasks (columns)
total_tasks = len(pivot_df.columns)
if 'SWE-bench' in benchmark_name:
total_tasks = 50 # TODO - remove hardcoding
# Add the new row to the pivot table
tasks_solved_df = pd.DataFrame(tasks_solved).T
tasks_solved_df.index = [f'<b>Tasks Solved: {tasks_solved.sum()}/{total_tasks} (All Agents)</b>']
# print number of tasks solved
pivot_df = pd.concat([pivot_df, tasks_solved_df])
num_agents = len(pivot_df.index)
row_height = 30 # Fixed height for each row in pixels
total_height = num_agents * row_height
# Create a custom colorscale
colorscale=[[0, 'white'], [1, '#3498db']]
# Create the heatmap
fig = go.Figure(data=go.Heatmap(
z=pivot_df.values,
y=pivot_df.index,
x=pivot_df.columns,
colorscale=colorscale,
showscale=False,
hovertemplate='<b>Agent:</b> %{y}<br>' +
'<b>Task:</b> %{x}<br>' +
'<b>Status:</b> %{z}<extra></extra>'
))
# Update the layout
fig.update_layout(
xaxis_title='Task ID',
height=total_height + 50, # Add extra space for the new row
yaxis=dict(
autorange='reversed',
showticklabels=True,
showline=True,
linecolor='black',
showgrid=False
),
xaxis=dict(
side='top',
showticklabels=False,
showline=True,
linecolor='black',
showgrid=False
),
plot_bgcolor='white',
paper_bgcolor='white',
hoverlabel=dict(
bgcolor="white",
font_size=12,
font_family="Arial"
),
modebar=dict(
activecolor='#1f77b4',
orientation='h',
bgcolor='rgba(255,255,255,0.8)',
color='#777',
add=['pan2d'],
remove=[
'zoom2d', 'zoomIn2d', 'zoomOut2d', 'resetScale2d',
'hoverClosestCartesian', 'hoverCompareCartesian',
'toggleSpikelines', 'lasso2d', 'lasso', 'select2d', 'select'
]
),
dragmode='pan'
)
return fig
def create_bar_chart(categories, values, x_label, y_label, title):
# Sort categories and values based on values in descending order
sorted_data = sorted(zip(categories, values), key=lambda x: x[1], reverse=True)
categories, values = zip(*sorted_data)
# get total number of tasks
total_tasks = sum(values)
text_labels = [f"({value/total_tasks:.1%} of failures)" for value in values]
fig = go.Figure(data=[go.Bar(
y=categories,
x=values,
orientation='h',
marker_color='#3498db', # Same color as the scatter plot
text=text_labels,
textposition='auto',
customdata=[f'{value} tasks ({value/total_tasks:.1%} of failures)' for value in values],
textfont=dict(color='black', size=14, family='Arial', weight=2),
hovertemplate='<b>%{y}</b><br>' +
'Affected Tasks: %{customdata}<extra></extra>'
)])
fig.update_layout(
height=600,
xaxis=dict(
showline=True,
linecolor='black',
showgrid=False
),
yaxis=dict(
showline=True,
linecolor='black',
showgrid=False,
autorange="reversed" # This will put the category with the highest value at the top
),
plot_bgcolor='white',
paper_bgcolor='white',
bargap=0.2,
bargroupgap=0.1,
hoverlabel=dict(bgcolor="white", font_size=12, font_family="Arial"),
modebar=dict(
activecolor='#1f77b4',
orientation='h',
bgcolor='rgba(255,255,255,0.8)',
color='#777',
add=['pan2d'],
remove=[
'zoom2d', 'zoomIn2d', 'zoomOut2d', 'resetScale2d',
'hoverClosestCartesian', 'hoverCompareCartesian',
'toggleSpikelines', 'lasso2d', 'lasso', 'select2d', 'select'
]
),
dragmode='pan'
)
return fig
def create_scatter_plot(df, x: str, y: str, x_label: str = None, y_label: str = None, hover_data: list = None):
# agents = [Agent(row['Total Cost'], row['Accuracy']) for i, row in df.iterrows()]
# instead of creating one Agent object for each row, we can create one Agent object for each unique agent and use the mean of the cost and accuracy values
unique_agents = df['Agent Name'].unique()
agents = [Agent(df[df['Agent Name'] == agent]['Total Cost'].mean(), df[df['Agent Name'] == agent]['Accuracy'].mean()) for agent in unique_agents]
pareto_frontier = compute_pareto_frontier(agents)
fig = go.Figure()
# Sort the Pareto frontier points by x-coordinate
pareto_points = sorted([(agent.total_cost, agent.accuracy) for agent in pareto_frontier], key=lambda x: x[0])
# Add the Pareto frontier line
fig.add_trace(go.Scatter(
x=[point[0] for point in pareto_points],
y=[point[1] for point in pareto_points],
mode='lines',
name='Pareto Frontier',
hoverinfo=None,
line=dict(color='black', width=1, dash='dash')
))
# Plot scatter points and error bars for each agent
unique_agents = df[hover_data[0]].unique()
for agent in unique_agents:
agent_data = df[df[hover_data[0]] == agent]
x_value = [np.mean(agent_data[x].values)]
y_value = [np.mean(agent_data[y].values)]
if len(agent_data) > 1:
# Calculate 95% confidence intervals
ci_x = stats.t.interval(0.95, len(agent_data[x])-1, loc=np.mean(agent_data[x]), scale=stats.sem(agent_data[x]))
ci_y = stats.t.interval(0.95, len(agent_data[y])-1, loc=np.mean(agent_data[y]), scale=stats.sem(agent_data[y]))
# # Add error bars for x (cost)
# fig.add_trace(go.Scatter(
# x=x_value,
# y=y_value,
# error_x=dict(
# type='data',
# symmetric=False,
# array=[ci_x[1] - x_value],
# arrayminus=[x_value - ci_x[0]],
# color='red',
# ),
# mode='markers',
# marker=dict(color='rgba(0,0,0,0)'),
# showlegend=False,
# hoverinfo='none'
# ))
# # Add error bars for y (accuracy)
# fig.add_trace(go.Scatter(
# x=x_value,
# y=y_value,
# error_y=dict(
# type='data',
# symmetric=False,
# array=[ci_y[1] - y_value],
# arrayminus=[y_value - ci_y[0]],
# color='green',
# ),
# mode='markers',
# marker=dict(color='rgba(0,0,0,0)'),
# showlegend=False,
# hoverinfo='none'
# ))
# Add error bars for x (cost minmax)
fig.add_trace(go.Scatter(
x=x_value,
y=y_value,
error_x=dict(
type='data',
symmetric=False,
array=[np.max(agent_data[x]) - x_value],
arrayminus=[x_value - np.min(agent_data[x])],
color='#fec44f',
),
mode='markers',
marker=dict(color='rgba(0,0,0,0)', opacity=0),
showlegend=False,
hoverinfo=None
))
# Add error bars for y (accuracy minmax)
fig.add_trace(go.Scatter(
x=x_value,
y=y_value,
error_y=dict(
type='data',
symmetric=False,
array=[np.max(agent_data[y]) - y_value],
arrayminus=[y_value - np.min(agent_data[y])],
color='#bdbdbd',
),
mode='markers',
marker=dict(color='rgba(0,0,0,0)', opacity=0),
showlegend=False,
hoverinfo=None
))
# Add scatter points for this agent
fig.add_trace(go.Scatter(
x=x_value,
y=y_value,
mode='markers',
marker=dict(size=10, color='#3498db'),
customdata=agent_data[hover_data],
showlegend=False,
hovertemplate="<br>".join([
"<b>Agent</b>: %{customdata[0]}",
"<b>Total Cost</b>: $%{x:.1f}",
"<b>Accuracy</b>: %{y:.1%}<extra></extra>",
]),
hoverlabel=dict(bgcolor="white", font_size=12, font_family="Arial"),
))
# Add legend entries for error bars
# fig.add_trace(go.Scatter(
# x=[None], y=[None], mode='markers',
# marker=dict(color='red', size=10),
# name='Cost CI (95%)'
# ))
# fig.add_trace(go.Scatter(
# x=[None], y=[None], mode='markers',
# marker=dict(color='green', size=10),
# name='Accuracy CI (95%)'
# ))
# Add legend entries for error bars
fig.add_trace(go.Scatter(
x=[None], y=[None], mode='markers',
marker=dict(color='#fec44f', size=10),
name='Cost CI (Min-Max)'
))
fig.add_trace(go.Scatter(
x=[None], y=[None], mode='markers',
marker=dict(color='#bdbdbd', size=10),
name='Accuracy CI (Min-Max)'
))
fig.update_layout(
height = 600,
xaxis_title = x_label,
yaxis_title = y_label,
xaxis = dict(
showline = True,
linecolor = 'black',
showgrid = False),
yaxis = dict(
showline = True,
showgrid = False,
linecolor = 'black'),
plot_bgcolor = 'white',
legend=dict(
yanchor="bottom",
y=0.01,
xanchor="right",
x=0.98,
bgcolor="rgba(255, 255, 255, 0.5)" # semi-transparent white background
),
modebar=dict(
activecolor='#1f77b4', # Color of active tool
orientation='h', # Horizontal orientation
bgcolor='rgba(255,255,255,0.8)', # Slightly transparent white background
color='#777', # Color of inactive tools
add = ['pan2d'],
remove = [
'zoom2d',
'zoomIn2d',
'zoomOut2d',
'resetScale2d',
'hoverClosestCartesian',
'hoverCompareCartesian',
'toggleSpikelines',
'lasso2d',
'lasso',
'select2d',
'select']
),
dragmode='pan'
)
fig.update_yaxes(rangemode="tozero")
fig.update_xaxes(rangemode="tozero")
return fig
# def create_scatter_plot(df, x: str, y: str, x_label: str = None, y_label: str = None, hover_data: list = None):
# agents = [Agent(row['Total Cost'], row['Accuracy']) for i, row in df.iterrows()]
# pareto_frontier = compute_pareto_frontier(agents)
# fig = go.Figure()
# # Function to generate points for error ellipse
# def error_ellipse(x_center, y_center, x_radius, y_radius, angle, n=50):
# t = np.linspace(0, 2*np.pi, n)
# x = x_radius * np.cos(t)
# y = y_radius * np.sin(t)
# rotation = np.array([[np.cos(angle), -np.sin(angle)],
# [np.sin(angle), np.cos(angle)]])
# xy = np.dot(rotation, np.array([x, y]))
# return x_center + xy[0], y_center + xy[1]
# # Create a color map for agents
# unique_agents = df['Agent Name'].unique()
# colors = px.colors.qualitative.Plotly
# color_map = {agent: colors[i % len(colors)] for i, agent in enumerate(unique_agents)}
# # Add scatter points and error ellipses for each agent
# for agent in unique_agents:
# agent_data = df[df['Agent Name'] == agent]
# # Add scatter points
# fig.add_trace(go.Scatter(
# x=agent_data[x],
# y=agent_data[y],
# mode='markers',
# name=agent,
# marker=dict(size=10, color=color_map[agent]),
# customdata=agent_data[hover_data] if hover_data else None,
# hovertemplate="<br>".join([
# f"<b>Agent</b>: {agent}",
# f"<b>{x}</b>: ${{x:.1f}}",
# f"<b>{y}</b>: {{y:.1%}}",
# ] + ([f"<b>{col}</b>: {{customdata[{i}]}}" for i, col in enumerate(hover_data)] if hover_data else []))
# ))
# # Calculate mean and standard deviation for x and y
# x_mean = agent_data[x].mean()
# y_mean = agent_data[y].mean()
# x_std = agent_data[x].std()
# y_std = agent_data[y].std()
# # Calculate correlation coefficient
# corr = agent_data[x].corr(agent_data[y])
# # Add error ellipses (1 and 2 standard deviations)
# for n_std, opacity in [(1, 0.5), (2, 0.5)]:
# chi2_val = chi2.ppf(0.68 if n_std == 1 else 0.95, 2)
# x_radius = np.sqrt(chi2_val) * x_std
# y_radius = np.sqrt(chi2_val) * y_std
# angle = np.arctan2(y_std * corr, x_std)
# ellipse_x, ellipse_y = error_ellipse(x_mean, y_mean, x_radius, y_radius, angle)
# fig.add_shape(type="path",
# path=f"M {ellipse_x[0]}, {ellipse_y[0]} " +
# " ".join([f"L{x},{y}" for x, y in zip(ellipse_x[1:], ellipse_y[1:])]) +
# " Z",
# line_color=color_map[agent],
# line_width=2,
# opacity=opacity,
# layer="below")
# # Sort the Pareto frontier points by x-coordinate
# pareto_points = sorted([(agent.total_cost, agent.accuracy) for agent in pareto_frontier], key=lambda x: x[0])
# # Add the Pareto frontier line
# fig.add_trace(go.Scatter(
# x=[point[0] for point in pareto_points],
# y=[point[1] for point in pareto_points],
# mode='lines',
# name='Pareto Frontier',
# line=dict(color='black', width=1, dash='dash')
# ))
# fig.update_layout(
# height = 600,
# xaxis_title = x_label,
# yaxis_title = y_label,
# xaxis = dict(
# showline = True,
# linecolor = 'black',
# showgrid = False),
# yaxis = dict(
# showline = True,
# showgrid = False,
# linecolor = 'black'),
# plot_bgcolor = 'white',
# legend=dict(
# yanchor="bottom",
# y=0.01,
# xanchor="right",
# x=0.98,
# bgcolor="rgba(255, 255, 255, 0.5)"
# ),
# modebar=dict(
# activecolor='#1f77b4',
# orientation='h',
# bgcolor='rgba(255,255,255,0.8)',
# color='#777',
# add = ['pan2d'],
# remove = [
# 'zoom2d', 'zoomIn2d', 'zoomOut2d', 'resetScale2d',
# 'hoverClosestCartesian', 'hoverCompareCartesian',
# 'toggleSpikelines', 'lasso2d', 'lasso',
# 'select2d', 'select'
# ]
# ),
# dragmode='pan'
# )
# fig.update_yaxes(rangemode="tozero")
# fig.update_xaxes(rangemode="tozero")
# return fig
# def create_scatter_plot(df, x: str, y: str, x_label: str = None, y_label: str = None, hover_data: list = None):
# agents = [Agent(row['Total Cost'], row['Accuracy']) for i, row in df.iterrows()]
# pareto_frontier = compute_pareto_frontier(agents)
# fig = px.scatter(df,
# x=x,
# y=y,
# custom_data=hover_data)
# fig.update_traces(
# hovertemplate="<br>".join([
# "<b>Agent</b>: %{customdata[0]}",
# "<b>Total Cost</b>: $%{x:.1f}",
# "<b>Accuracy</b>: %{y:.1%}",
# ])
# )
# fig.update_traces(marker=dict(size=10, color='#3498db'),
# hoverlabel=dict(bgcolor="white", font_size=12, font_family="Arial"),)
# # Sort the Pareto frontier points by x-coordinate
# pareto_points = sorted([(agent.total_cost, agent.accuracy) for agent in pareto_frontier], key=lambda x: x[0])
# # Add the Pareto frontier line
# fig.add_trace(go.Scatter(
# x=[point[0] for point in pareto_points],
# y=[point[1] for point in pareto_points],
# mode='lines',
# name='Pareto Frontier',
# line=dict(color='black', width=1, dash='dash')
# ))
# fig.update_layout(
# # width = 1150,
# height = 600,
# xaxis_title = x_label,
# yaxis_title = y_label,
# xaxis = dict(
# showline = True,
# linecolor = 'black',
# showgrid = False),
# yaxis = dict(
# showline = True,
# showgrid = False,
# linecolor = 'black'),
# plot_bgcolor = 'white',
# # Legend positioning
# legend=dict(
# yanchor="bottom",
# y=0.01,
# xanchor="right",
# x=0.98,
# bgcolor="rgba(255, 255, 255, 0.5)" # semi-transparent white background
# ),
# modebar=dict(
# activecolor='#1f77b4', # Color of active tool
# orientation='h', # Vertical orientation
# bgcolor='rgba(255,255,255,0.8)', # Slightly transparent white background
# color='#777', # Color of inactive tools
# add = ['pan2d'],
# remove = [
# 'zoom2d',
# 'zoomIn2d',
# 'zoomOut2d',
# 'resetScale2d',
# 'hoverClosestCartesian',
# 'hoverCompareCartesian',
# 'toggleSpikelines',
# 'lasso2d',
# 'lasso',
# 'select2d',
# 'select']
# ),
# dragmode='pan'
# )
# fig.update_yaxes(rangemode="tozero")
# fig.update_xaxes(rangemode="tozero")
# return fig
import plotly.graph_objects as go
import textwrap
def create_flow_chart(steps):
node_x = []
node_y = []
edge_x = []
edge_y = []
node_text = []
hover_text = []
node_colors = []
node_shapes = []
# Define color and shape mappings
color_map = {True: 'green', False: 'red'} # True for success, False for challenges
shape_map = {
'plan': 'octagon',
'tool': 'square',
'retrieve': 'diamond',
'other': 'circle'
}
for i, step in enumerate(steps):
node_x.append(i)
node_y.append(0)
# Extract Description, Assessment, and new attributes
analysis = step['analysis']
if isinstance(analysis, str):
try:
analysis = json.loads(analysis)
except json.JSONDecodeError:
analysis = {}
description = analysis.get('description', 'No description available.')
assessment = analysis.get('assessment', 'No assessment available.')
success = analysis.get('success', True) # Assuming True if not specified
# action_type = analysis.get('action_type', 'other') # Default to 'other' if not specified
step_headline = analysis.get('headline', '')
# Set node color and shape based on attributes
node_colors.append(color_map[success])
# node_shapes.append(shape_map.get(action_type, 'circle'))
# Wrap text to improve readability
wrapped_description = '<br>'.join(textwrap.wrap(description, width=90, max_lines=20))
wrapped_assessment = '<br>'.join(textwrap.wrap(assessment, width=90, max_lines=10))
wrapped_outline = textwrap.shorten(step_headline, width=50, placeholder='')
wrapped_outline = '' if wrapped_outline == '' else f": {wrapped_outline}"
node_text_outline = '' if wrapped_outline == '' else f":<br>{'<br>'.join(textwrap.wrap(step_headline, width=30, placeholder=''))}"
node_text.append(f"Step {i+1}{node_text_outline}")
# Create formatted hover text without indentation
hover_info = f"<b>Step {i+1}{wrapped_outline}</b><br><br>" \
f"<b>Description:</b><br>" \
f"{wrapped_description}<br><br>" \
# f"<b>Assessment:</b><br>" \
# f"{wrapped_assessment}<br><br>" \
# f"<b>Successful:</b> {'Yes' if success else 'No'}<br>" \
# f"<b>Action Type:</b> {action_type.capitalize()}"
hover_text.append(hover_info)
if i > 0:
edge_x.extend([i-1, i, None])
edge_y.extend([0, 0, None])
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers+text',
text=node_text,
textposition="top center",
showlegend=False,
hovertext=hover_text,
hoverinfo='text',
hoverlabel=dict(bgcolor="white", font_size=12, font_family="Arial"),
marker=dict(
# color=node_colors,
color='#3498db',
size=30,
line_width=2,
# symbol=node_shapes
))
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=2, color='#888'),
hoverinfo='none',
showlegend=False,
mode='lines')
# Create legend traces
legend_traces = []
# # Color legend
# for success, color in color_map.items():
# legend_traces.append(go.Scatter(
# x=[None], y=[None],
# mode='markers',
# marker=dict(size=10, color=color),
# showlegend=True,
# name=f"{'Success' if success else 'Issue'}"
# ))
# # Shape legend
# for action, shape in shape_map.items():
# legend_traces.append(go.Scatter(
# x=[None], y=[None],
# mode='markers',
# marker=dict(size=10, symbol=shape, color='gray'),
# showlegend=True,
# name=f"{action.capitalize()}"
# ))
# Combine all traces
all_traces = [edge_trace, node_trace] + legend_traces
layout = go.Layout(
showlegend=True,
hovermode='closest',
margin=dict(b=20,l=5,r=5,t=40),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
plot_bgcolor='white',
paper_bgcolor='white',
modebar=dict(
activecolor='#1f77b4', # Color of active tool
orientation='h', # Vertical orientation
bgcolor='rgba(255,255,255,0.8)', # Slightly transparent white background
color='#777', # Color of inactive tools
),
legend=dict(
orientation="h",
yanchor="bottom",
y=0.02,
xanchor="right",
x=1,
bgcolor='rgba(255,255,255,0.8)',
bordercolor='rgba(0,0,0,0.1)',
borderwidth=1
),
)
fig = go.Figure(data=all_traces, layout=layout)
fig.update_layout(legend=dict(
orientation="h",
yanchor="bottom",
y=1.02,
xanchor="right",
x=1,
bgcolor='rgba(255,255,255,0.8)', # Set legend background to slightly transparent white
bordercolor='rgba(0,0,0,0.1)', # Add a light border to the legend
borderwidth=1
),
dragmode='pan'
)
config = {
'add': ['pan2d'],
'remove': [
'zoom2d',
'zoomIn2d',
'zoomOut2d',
'resetScale2d',
'hoverClosestCartesian',
'hoverCompareCartesian',
'toggleSpikelines',
'lasso2d',
'lasso',
'select2d',
'select',
]
}
# Apply the config to the figure
fig.update_layout(modebar=config)
return fig |