|
import torch |
|
|
|
from modules import sampler_hijack, shared |
|
from modules.logging_colors import logger |
|
from modules.text_generation import generate_reply |
|
|
|
global_scores = None |
|
|
|
|
|
def get_next_logits(prompt, state, use_samplers, previous): |
|
if shared.model is None: |
|
logger.error("No model is loaded! Select one in the Model tab.") |
|
return 'Error: No model is loaded1 Select one in the Model tab.', previous |
|
|
|
is_non_hf_exllamav2 = shared.model.__class__.__name__ == 'Exllamav2Model' |
|
is_non_hf_exllamav1 = shared.model.__class__.__name__ == 'ExllamaModel' |
|
is_non_hf_llamacpp = shared.model.__class__.__name__ == 'LlamaCppModel' |
|
|
|
if use_samplers: |
|
if any([is_non_hf_exllamav2, is_non_hf_exllamav1, is_non_hf_llamacpp]): |
|
logger.error("Sampler hijacking is not supported non-Huggingface loaders.") |
|
|
|
|
|
|
|
return 'Error: Sampler hijacking is not supported non-Huggingface loaders. Please disable the "Use samplers" option.', previous |
|
|
|
state['max_new_tokens'] = 1 |
|
state['auto_max_new_tokens'] = False |
|
for _ in generate_reply(prompt, state): |
|
pass |
|
|
|
scores = sampler_hijack.global_scores[-1] |
|
else: |
|
if is_non_hf_exllamav2 or is_non_hf_exllamav1: |
|
tokens = shared.tokenizer.encode(prompt).cuda() |
|
scores = shared.model.get_logits(tokens)[-1][-1] |
|
elif is_non_hf_llamacpp: |
|
tokens = shared.tokenizer.encode(prompt) |
|
scores = shared.model.get_logits(tokens)[-1][-1] |
|
else: |
|
tokens = shared.tokenizer.encode(prompt, return_tensors='pt').cuda() |
|
output = shared.model(input_ids=tokens) |
|
scores = output['logits'][-1][-1] |
|
|
|
probs = torch.softmax(scores, dim=-1, dtype=torch.float) |
|
topk_values, topk_indices = torch.topk(probs, k=50, largest=True, sorted=True) |
|
topk_values = [f"{float(i):.5f}" for i in topk_values] |
|
if is_non_hf_exllamav1 or is_non_hf_llamacpp: |
|
topk_indices = [i.expand((1, 1)) for i in topk_indices] |
|
|
|
tokens = [shared.tokenizer.decode(i) for i in topk_indices] |
|
output = '' |
|
for row in list(zip(topk_values, tokens)): |
|
output += f"{row[0]} - {repr(row[1])}\n" |
|
|
|
return output, previous |
|
|