File size: 6,721 Bytes
070b43a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
GPTQ is a clever quantization algorithm that lightly reoptimizes the weights during quantization so that the accuracy loss is compensated relative to a round-to-nearest quantization. See the paper for more details: https://arxiv.org/abs/2210.17323
4-bit GPTQ models reduce VRAM usage by about 75%. So LLaMA-7B fits into a 6GB GPU, and LLaMA-30B fits into a 24GB GPU.
## Overview
There are two ways of loading GPTQ models in the web UI at the moment:
* Using AutoGPTQ:
* supports more models
* standardized (no need to guess any parameter)
* is a proper Python library
* ~no wheels are presently available so it requires manual compilation~
* supports loading both triton and cuda models
* Using GPTQ-for-LLaMa directly:
* faster CPU offloading
* faster multi-GPU inference
* supports loading LoRAs using a monkey patch
* requires you to manually figure out the wbits/groupsize/model_type parameters for the model to be able to load it
* supports either only cuda or only triton depending on the branch
For creating new quantizations, I recommend using AutoGPTQ: https://github.com/PanQiWei/AutoGPTQ
## AutoGPTQ
### Installation
No additional steps are necessary as AutoGPTQ is already in the `requirements.txt` for the webui. If you still want or need to install it manually for whatever reason, these are the commands:
```
conda activate textgen
git clone https://github.com/PanQiWei/AutoGPTQ.git && cd AutoGPTQ
pip install .
```
The last command requires `nvcc` to be installed (see the [instructions above](https://github.com/oobabooga/text-generation-webui/blob/main/docs/GPTQ-models-(4-bit-mode).md#step-1-install-nvcc)).
### Usage
When you quantize a model using AutoGPTQ, a folder containing a filed called `quantize_config.json` will be generated. Place that folder inside your `models/` folder and load it with the `--autogptq` flag:
```
python server.py --autogptq --model model_name
```
Alternatively, check the `autogptq` box in the "Model" tab of the UI before loading the model.
### Offloading
In order to do CPU offloading or multi-gpu inference with AutoGPTQ, use the `--gpu-memory` flag. It is currently somewhat slower than offloading with the `--pre_layer` option in GPTQ-for-LLaMA.
For CPU offloading:
```
python server.py --autogptq --gpu-memory 3000MiB --model model_name
```
For multi-GPU inference:
```
python server.py --autogptq --gpu-memory 3000MiB 6000MiB --model model_name
```
### Using LoRAs with AutoGPTQ
Works fine for a single LoRA.
## GPTQ-for-LLaMa
GPTQ-for-LLaMa is the original adaptation of GPTQ for the LLaMA model. It was made possible by [@qwopqwop200](https://github.com/qwopqwop200/GPTQ-for-LLaMa): https://github.com/qwopqwop200/GPTQ-for-LLaMa
A Python package containing both major CUDA versions of GPTQ-for-LLaMa is used to simplify installation and compatibility: https://github.com/jllllll/GPTQ-for-LLaMa-CUDA
### Precompiled wheels
Kindly provided by our friend jllllll: https://github.com/jllllll/GPTQ-for-LLaMa-CUDA/releases
Wheels are included in requirements.txt and are installed with the webui on supported systems.
### Manual installation
#### Step 1: install nvcc
```
conda activate textgen
conda install cuda -c nvidia/label/cuda-11.7.1
```
The command above takes some 10 minutes to run and shows no progress bar or updates along the way.
You are also going to need to have a C++ compiler installed. On Linux, `sudo apt install build-essential` or equivalent is enough. On Windows, Visual Studio or Visual Studio Build Tools is required.
If you're using an older version of CUDA toolkit (e.g. 11.7) but the latest version of `gcc` and `g++` (12.0+) on Linux, you should downgrade with: `conda install -c conda-forge gxx==11.3.0`. Kernel compilation will fail otherwise.
#### Step 2: compile the CUDA extensions
```
python -m pip install git+https://github.com/jllllll/GPTQ-for-LLaMa-CUDA -v
```
### Getting pre-converted LLaMA weights
* Direct download (recommended):
https://huggingface.co./Neko-Institute-of-Science/LLaMA-7B-4bit-128g
https://huggingface.co./Neko-Institute-of-Science/LLaMA-13B-4bit-128g
https://huggingface.co./Neko-Institute-of-Science/LLaMA-30B-4bit-128g
https://huggingface.co./Neko-Institute-of-Science/LLaMA-65B-4bit-128g
These models were converted with `desc_act=True`. They work just fine with ExLlama. For AutoGPTQ, they will only work on Linux with the `triton` option checked.
* Torrent:
https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483891617
https://github.com/oobabooga/text-generation-webui/pull/530#issuecomment-1483941105
These models were converted with `desc_act=False`. As such, they are less accurate, but they work with AutoGPTQ on Windows. The `128g` versions are better from 13b upwards, and worse for 7b. The tokenizer files in the torrents are outdated, in particular the files called `tokenizer_config.json` and `special_tokens_map.json`. Here you can find those files: https://huggingface.co./oobabooga/llama-tokenizer
### Starting the web UI:
Use the `--gptq-for-llama` flag.
For the models converted without `group-size`:
```
python server.py --model llama-7b-4bit --gptq-for-llama
```
For the models converted with `group-size`:
```
python server.py --model llama-13b-4bit-128g --gptq-for-llama --wbits 4 --groupsize 128
```
The command-line flags `--wbits` and `--groupsize` are automatically detected based on the folder names in many cases.
### CPU offloading
It is possible to offload part of the layers of the 4-bit model to the CPU with the `--pre_layer` flag. The higher the number after `--pre_layer`, the more layers will be allocated to the GPU.
With this command, I can run llama-7b with 4GB VRAM:
```
python server.py --model llama-7b-4bit --pre_layer 20
```
This is the performance:
```
Output generated in 123.79 seconds (1.61 tokens/s, 199 tokens)
```
You can also use multiple GPUs with `pre_layer` if using the oobabooga fork of GPTQ, eg `--pre_layer 30 60` will load a LLaMA-30B model half onto your first GPU and half onto your second, or `--pre_layer 20 40` will load 20 layers onto GPU-0, 20 layers onto GPU-1, and 20 layers offloaded to CPU.
### Using LoRAs with GPTQ-for-LLaMa
This requires using a monkey patch that is supported by this web UI: https://github.com/johnsmith0031/alpaca_lora_4bit
To use it:
1. Install alpaca_lora_4bit using pip
```
git clone https://github.com/johnsmith0031/alpaca_lora_4bit.git
cd alpaca_lora_4bit
git fetch origin winglian-setup_pip
git checkout winglian-setup_pip
pip install .
```
2. Start the UI with the `--monkey-patch` flag:
```
python server.py --model llama-7b-4bit-128g --listen --lora tloen_alpaca-lora-7b --monkey-patch
```
|