File size: 5,497 Bytes
070b43a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
from pathlib import Path
import torch
from peft import PeftModel
import modules.shared as shared
from modules.logging_colors import logger
from modules.models import reload_model
def add_lora_to_model(lora_names):
if 'GPTQForCausalLM' in shared.model.__class__.__name__ or shared.args.loader == 'AutoGPTQ':
add_lora_autogptq(lora_names)
elif shared.model.__class__.__name__ in ['ExllamaModel', 'ExllamaHF'] or shared.args.loader == 'ExLlama':
add_lora_exllama(lora_names)
else:
add_lora_transformers(lora_names)
def get_lora_path(lora_name):
p = Path(lora_name)
if p.exists():
lora_name = p.parts[-1]
return Path(f"{shared.args.lora_dir}/{lora_name}")
def add_lora_exllama(lora_names):
try:
from exllama.lora import ExLlamaLora
except:
try:
from repositories.exllama.lora import ExLlamaLora
except:
logger.error("Could not find the file repositories/exllama/lora.py. Make sure that exllama is cloned inside repositories/ and is up to date.")
return
if len(lora_names) == 0:
if shared.model.__class__.__name__ == 'ExllamaModel':
shared.model.generator.lora = None
else:
shared.model.lora = None
shared.lora_names = []
return
else:
if len(lora_names) > 1:
logger.warning('ExLlama can only work with 1 LoRA at the moment. Only the first one in the list will be loaded.')
lora_path = get_lora_path(lora_names[0])
lora_config_path = lora_path / "adapter_config.json"
lora_adapter_path = lora_path / "adapter_model.bin"
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join([lora_names[0]])))
if shared.model.__class__.__name__ == 'ExllamaModel':
lora = ExLlamaLora(shared.model.model, str(lora_config_path), str(lora_adapter_path))
shared.model.generator.lora = lora
else:
lora = ExLlamaLora(shared.model.ex_model, str(lora_config_path), str(lora_adapter_path))
shared.model.lora = lora
shared.lora_names = [lora_names[0]]
return
# Adapted from https://github.com/Ph0rk0z/text-generation-webui-testing
def add_lora_autogptq(lora_names):
try:
from auto_gptq import get_gptq_peft_model
from auto_gptq.utils.peft_utils import GPTQLoraConfig
except:
logger.error("This version of AutoGPTQ does not support LoRA. You need to install from source or wait for a new release.")
return
if len(lora_names) == 0:
reload_model()
shared.lora_names = []
return
else:
if len(lora_names) > 1:
logger.warning('AutoGPTQ can only work with 1 LoRA at the moment. Only the first one in the list will be loaded.')
if not shared.args.no_inject_fused_attention:
logger.warning('Fused Atttention + AutoGPTQ may break Lora loading. Disable it.')
peft_config = GPTQLoraConfig(
inference_mode=True,
)
lora_path = get_lora_path(lora_names[0])
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join([lora_names[0]])))
shared.model = get_gptq_peft_model(shared.model, peft_config, lora_path)
shared.lora_names = [lora_names[0]]
return
def add_lora_transformers(lora_names):
prior_set = set(shared.lora_names)
added_set = set(lora_names) - prior_set
removed_set = prior_set - set(lora_names)
# If no LoRA needs to be added or removed, exit
if len(added_set) == 0 and len(removed_set) == 0:
return
# Add a LoRA when another LoRA is already present
if len(removed_set) == 0 and len(prior_set) > 0:
logger.info(f"Adding the LoRA(s) named {added_set} to the model...")
for lora in added_set:
shared.model.load_adapter(get_lora_path(lora), lora)
return
# If any LoRA needs to be removed, start over
if len(removed_set) > 0:
# shared.model may no longer be PeftModel
if hasattr(shared.model, 'disable_adapter'):
shared.model.disable_adapter()
shared.model = shared.model.base_model.model
if len(lora_names) > 0:
params = {}
if not shared.args.cpu:
if shared.args.load_in_4bit or shared.args.load_in_8bit:
params['peft_type'] = shared.model.dtype
else:
params['dtype'] = shared.model.dtype
if hasattr(shared.model, "hf_device_map"):
params['device_map'] = {"base_model.model." + k: v for k, v in shared.model.hf_device_map.items()}
logger.info("Applying the following LoRAs to {}: {}".format(shared.model_name, ', '.join(lora_names)))
shared.model = PeftModel.from_pretrained(shared.model, get_lora_path(lora_names[0]), adapter_name=lora_names[0], **params)
for lora in lora_names[1:]:
shared.model.load_adapter(get_lora_path(lora), lora)
shared.lora_names = lora_names
if not shared.args.load_in_8bit and not shared.args.cpu:
shared.model.half()
if not hasattr(shared.model, "hf_device_map"):
if torch.backends.mps.is_available():
device = torch.device('mps')
shared.model = shared.model.to(device)
else:
shared.model = shared.model.cuda()
|