Spaces:
Runtime error
Runtime error
Workaround for scaling bug in transformers
Browse files
app.py
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
-
import os
|
3 |
import torch
|
4 |
from transformers import FuyuForCausalLM, AutoTokenizer
|
5 |
from transformers.models.fuyu.processing_fuyu import FuyuProcessor
|
6 |
from transformers.models.fuyu.image_processing_fuyu import FuyuImageProcessor
|
|
|
7 |
|
8 |
model_id = "adept/fuyu-8b"
|
9 |
revision = "refs/pr/3"
|
@@ -16,8 +16,21 @@ processor = FuyuProcessor(image_processor=FuyuImageProcessor(), tokenizer=tokeni
|
|
16 |
|
17 |
caption_prompt = "Generate a coco-style caption.\\n"
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def predict(image, prompt):
|
20 |
# image = image.convert('RGB')
|
|
|
|
|
21 |
model_inputs = processor(text=prompt, images=[image])
|
22 |
model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}
|
23 |
|
@@ -57,7 +70,7 @@ with gr.Blocks(css=css) as demo:
|
|
57 |
with gr.Tab("Visual Question Answering"):
|
58 |
with gr.Row():
|
59 |
with gr.Column():
|
60 |
-
image_input = gr.Image(label="Upload your Image")
|
61 |
text_input = gr.Textbox(label="Ask a Question")
|
62 |
vqa_output = gr.Textbox(label="Output")
|
63 |
|
@@ -75,7 +88,7 @@ with gr.Blocks(css=css) as demo:
|
|
75 |
|
76 |
with gr.Tab("Image Captioning"):
|
77 |
with gr.Row():
|
78 |
-
captioning_input = gr.Image(label="Upload your Image")
|
79 |
captioning_output = gr.Textbox(label="Output")
|
80 |
captioning_btn = gr.Button("Generate Caption")
|
81 |
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
from transformers import FuyuForCausalLM, AutoTokenizer
|
4 |
from transformers.models.fuyu.processing_fuyu import FuyuProcessor
|
5 |
from transformers.models.fuyu.image_processing_fuyu import FuyuImageProcessor
|
6 |
+
from PIL import Image
|
7 |
|
8 |
model_id = "adept/fuyu-8b"
|
9 |
revision = "refs/pr/3"
|
|
|
16 |
|
17 |
caption_prompt = "Generate a coco-style caption.\\n"
|
18 |
|
19 |
+
def resize_to_max(image, max_width=1920, max_height=1080):
|
20 |
+
width, height = image.size
|
21 |
+
if width <= max_width and height <= max_height:
|
22 |
+
return image
|
23 |
+
|
24 |
+
scale = min(max_width/width, max_height/height)
|
25 |
+
width = int(width*scale)
|
26 |
+
height = int(height*scale)
|
27 |
+
|
28 |
+
return image.resize((width, height), Image.LANCZOS)
|
29 |
+
|
30 |
def predict(image, prompt):
|
31 |
# image = image.convert('RGB')
|
32 |
+
image = resize_to_max(image)
|
33 |
+
|
34 |
model_inputs = processor(text=prompt, images=[image])
|
35 |
model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()}
|
36 |
|
|
|
70 |
with gr.Tab("Visual Question Answering"):
|
71 |
with gr.Row():
|
72 |
with gr.Column():
|
73 |
+
image_input = gr.Image(label="Upload your Image", type="pil")
|
74 |
text_input = gr.Textbox(label="Ask a Question")
|
75 |
vqa_output = gr.Textbox(label="Output")
|
76 |
|
|
|
88 |
|
89 |
with gr.Tab("Image Captioning"):
|
90 |
with gr.Row():
|
91 |
+
captioning_input = gr.Image(label="Upload your Image", type="pil")
|
92 |
captioning_output = gr.Textbox(label="Output")
|
93 |
captioning_btn = gr.Button("Generate Caption")
|
94 |
|