Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import FuyuForCausalLM, AutoTokenizer | |
from transformers.models.fuyu.processing_fuyu import FuyuProcessor | |
from transformers.models.fuyu.image_processing_fuyu import FuyuImageProcessor | |
from PIL import Image | |
model_id = "adept/fuyu-8b" | |
dtype = torch.bfloat16 | |
device = "cuda" | |
tokenizer = AutoTokenizer.from_pretrained(model_id) | |
model = FuyuForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=dtype) | |
processor = FuyuProcessor(image_processor=FuyuImageProcessor(), tokenizer=tokenizer) | |
caption_prompt = "Generate a coco-style caption.\\n" | |
def resize_to_max(image, max_width=1080, max_height=1080): | |
width, height = image.size | |
if width <= max_width and height <= max_height: | |
return image | |
scale = min(max_width/width, max_height/height) | |
width = int(width*scale) | |
height = int(height*scale) | |
return image.resize((width, height), Image.LANCZOS) | |
def predict(image, prompt): | |
# image = image.convert('RGB') | |
image = resize_to_max(image) | |
model_inputs = processor(text=prompt, images=[image]) | |
model_inputs = {k: v.to(dtype=dtype if torch.is_floating_point(v) else v.dtype, device=device) for k,v in model_inputs.items()} | |
generation_output = model.generate(**model_inputs, max_new_tokens=40) | |
prompt_len = model_inputs["input_ids"].shape[-1] | |
return tokenizer.decode(generation_output[0][prompt_len:], skip_special_tokens=True) | |
def caption(image): | |
return predict(image, caption_prompt) | |
def set_example_image(example: list) -> dict: | |
return gr.Image.update(value=example[0]) | |
css = """ | |
#mkd { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.HTML( | |
""" | |
<h1 id="title">Fuyu Multimodal Demo</h1> | |
<h3><a href="https://hf.co/adept/fuyu-8b">Fuyu-8B</a> is a multimodal model that supports a variety of tasks combining text and image prompts.</h3> | |
For example, you can use it for captioning by asking it to describe an image. You can also ask it questions about an image, a task known as Visual Question Answering, or VQA. This demo lets you explore captioning and VQA, with more tasks coming soon :) | |
Learn more about the model in <a href="https://www.adept.ai/blog/fuyu-8b">our blog post</a>. | |
<br> | |
<br> | |
<strong>Note: This is a raw model release. We have not added further instruction-tuning, postprocessing or sampling strategies to control for undesirable outputs. The model may hallucinate, and you should expect to have to fine-tune the model for your use-case!</strong> | |
<h3>Play with Fuyu-8B in this demo! π¬</h3> | |
""" | |
) | |
with gr.Tab("Visual Question Answering"): | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(label="Upload your Image", type="pil") | |
text_input = gr.Textbox(label="Ask a Question") | |
vqa_output = gr.Textbox(label="Output") | |
vqa_btn = gr.Button("Answer Visual Question") | |
gr.Examples( | |
[["assets/vqa_example_1.png", "How is this made?"], ["assets/vqa_example_2.png", "What is this flower and where is it's origin?"], | |
["assets/docvqa_example.png", "How many items are sold?"], ["assets/screen2words_ui_example.png", "What is this app about?"]], | |
inputs = [image_input, text_input], | |
outputs = [vqa_output], | |
fn=predict, | |
cache_examples=True, | |
label='Click on any Examples below to get VQA results quickly π' | |
) | |
with gr.Tab("Image Captioning"): | |
with gr.Row(): | |
captioning_input = gr.Image(label="Upload your Image", type="pil") | |
captioning_output = gr.Textbox(label="Output") | |
captioning_btn = gr.Button("Generate Caption") | |
gr.Examples( | |
[["assets/captioning_example_1.png"], ["assets/captioning_example_2.png"]], | |
inputs = [captioning_input], | |
outputs = [captioning_output], | |
fn=caption, | |
cache_examples=True, | |
label='Click on any Examples below to get captioning results quickly π' | |
) | |
captioning_btn.click(fn=caption, inputs=captioning_input, outputs=captioning_output) | |
vqa_btn.click(fn=predict, inputs=[image_input, text_input], outputs=vqa_output) | |
demo.launch(server_name="0.0.0.0") |