mental-health / app.py
adeelshuaib's picture
Update app.py
fd009ff verified
import gradio as gr
from groq import Groq
import os
import time
import whisper
from gtts import gTTS
api_key = os.getenv('GROQ_API_KEY')
# Initialize Groq client
client = Groq(api_key=api_key)
# Load Whisper model
whisper_model = whisper.load_model("base") # You can use "tiny", "base", "small", "medium", or "large"
# Function to convert audio to text
def audio_to_text(audio_file):
# Use Whisper to transcribe audio
result = whisper_model.transcribe(audio_file)
return result['text']
# Function to convert text to audio
def text_to_audio(text):
tts = gTTS(text)
audio_file = "output_audio.mp3"
tts.save(audio_file)
return audio_file
# Function to generate responses with error handling
def generate_response(user_input, chat_history: list):
try:
# Prepare messages with chat history
messages = [{"role": "system", "content": "You are a mental health assistant. Your responses should be empathetic, non-judgmental, and provide helpful advice based on mental health principles. Always encourage seeking professional help when needed. Your responses should look human as well."}]
# Iterate through chat history and add user and assistant messages
for message in chat_history:
# Ensure that each message contains only 'role' and 'content' keys
if 'role' in message and 'content' in message:
messages.append({"role": message["role"], "content": message["content"]})
else:
print(f"Skipping invalid message: {message}")
messages.append({"role": "user", "content": user_input}) # Add the current user message
# Call Groq API to get a response from LLaMA
chat_completion = client.chat.completions.create(
messages=messages,
model='llama-3.1-70b-versatile'
)
# Extract response
response = chat_completion.choices[0].message.content
return response, chat_history # Ensure you return both response and chat_history
except Exception as e:
print(f"Error occurred: {e}") # Print error to console for debugging
return "An error occurred while generating the response. Please try again.", chat_history
def gradio_interface():
with gr.Blocks() as demo:
# Initialize chat history
chat_history = []
# Create input components
gr.Markdown("## A Mental Health Chatbot")
chatbot = gr.Chatbot(type="messages")
msg = gr.Textbox(placeholder="Type your message here...")
audio_input = gr.Audio(type="filepath", label="Speak your message")
clear = gr.Button("Clear")
# User message submission function
def user(user_message, history: list):
history.append({"role": "user", "content": user_message})
return "", history
def bot(history: list):
if len(history) > 0:
user_input = history[-1]["content"]
response, updated_history = generate_response(user_input, history)
history = updated_history
history.append({"role": "assistant", "content": ""})
for character in response:
history[-1]['content'] += character
time.sleep(0.02)
yield history
# Speech-to-text processing
def process_audio(audio_file, history):
if audio_file:
transcription = audio_to_text(audio_file) # Convert audio to text
if transcription:
history.append({"role": "user", "content": transcription})
else:
history.append({"role": "assistant", "content": "I couldn't understand your audio. Please try again."})
return history
# Set up interaction flow:
msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(bot, chatbot, chatbot)
audio_input.change(process_audio, [audio_input, chatbot], chatbot).then(bot, chatbot, chatbot) # Ensure bot is triggered
clear.click(lambda: [], None, chatbot, queue=False)
demo.launch()
# Run the interface
gradio_interface()