adarksky commited on
Commit
9528e2d
1 Parent(s): 1a1e095

- test deploy 1

Browse files
Files changed (8) hide show
  1. .gitattributes +4 -0
  2. app.ipynb +134 -0
  3. app.py +14 -4
  4. giant_0.jpg +3 -0
  5. giant_1.jpg +3 -0
  6. model.pkl +3 -0
  7. red_0.jpg +3 -0
  8. red_1.jpg +3 -0
.gitattributes CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ giant_0.jpg filter=lfs diff=lfs merge=lfs -text
37
+ giant_1.jpg filter=lfs diff=lfs merge=lfs -text
38
+ red_0.jpg filter=lfs diff=lfs merge=lfs -text
39
+ red_1.jpg filter=lfs diff=lfs merge=lfs -text
app.ipynb ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": null,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "#| default_exp app"
10
+ ]
11
+ },
12
+ {
13
+ "cell_type": "code",
14
+ "execution_count": 1,
15
+ "metadata": {},
16
+ "outputs": [
17
+ {
18
+ "name": "stderr",
19
+ "output_type": "stream",
20
+ "text": [
21
+ "d:\\miniconda3\\envs\\fai\\Lib\\site-packages\\tqdm\\auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
22
+ " from .autonotebook import tqdm as notebook_tqdm\n"
23
+ ]
24
+ }
25
+ ],
26
+ "source": [
27
+ "#| export\n",
28
+ "from fastai.vision.all import *\n",
29
+ "import gradio as gr\n",
30
+ "\n",
31
+ "# def is_giant_panda(x): return x[0].isupper()"
32
+ ]
33
+ },
34
+ {
35
+ "cell_type": "code",
36
+ "execution_count": 6,
37
+ "metadata": {},
38
+ "outputs": [],
39
+ "source": [
40
+ "im = PILImage.create('giant_0.jpg')\n",
41
+ "im = im.to_thumb(192)"
42
+ ]
43
+ },
44
+ {
45
+ "cell_type": "code",
46
+ "execution_count": null,
47
+ "metadata": {},
48
+ "outputs": [],
49
+ "source": [
50
+ "#| export\n",
51
+ "learn = load_learner('model.pkl')"
52
+ ]
53
+ },
54
+ {
55
+ "cell_type": "code",
56
+ "execution_count": null,
57
+ "metadata": {},
58
+ "outputs": [],
59
+ "source": [
60
+ "learn.predict(im)"
61
+ ]
62
+ },
63
+ {
64
+ "cell_type": "code",
65
+ "execution_count": null,
66
+ "metadata": {},
67
+ "outputs": [],
68
+ "source": [
69
+ "#| export\n",
70
+ "categories = 'Giant panda', 'Red panda'\n",
71
+ "\n",
72
+ "def classify_image(img):\n",
73
+ " pred, idx, probs = learn.predict(img)\n",
74
+ " return dict(zip(categories, map(float, probs)))"
75
+ ]
76
+ },
77
+ {
78
+ "cell_type": "code",
79
+ "execution_count": null,
80
+ "metadata": {},
81
+ "outputs": [],
82
+ "source": [
83
+ "classify_image(im)"
84
+ ]
85
+ },
86
+ {
87
+ "cell_type": "code",
88
+ "execution_count": null,
89
+ "metadata": {},
90
+ "outputs": [],
91
+ "source": [
92
+ "#| export\n",
93
+ "image = gr.inputs.Image(shape=(192, 192))\n",
94
+ "label = gr.outputs.Label()\n",
95
+ "\n",
96
+ "examples = ['giant_0.jpg', 'red_0.jpg', 'giant_1.jpg', 'red_1.jpg']\n",
97
+ "interface = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)\n",
98
+ "interface.launch(inline=False)"
99
+ ]
100
+ },
101
+ {
102
+ "cell_type": "code",
103
+ "execution_count": null,
104
+ "metadata": {},
105
+ "outputs": [],
106
+ "source": [
107
+ "from nbdev.export import notebook2script\n",
108
+ "\n",
109
+ "notebook2script('app.ipynb')"
110
+ ]
111
+ }
112
+ ],
113
+ "metadata": {
114
+ "kernelspec": {
115
+ "display_name": "fai",
116
+ "language": "python",
117
+ "name": "python3"
118
+ },
119
+ "language_info": {
120
+ "codemirror_mode": {
121
+ "name": "ipython",
122
+ "version": 3
123
+ },
124
+ "file_extension": ".py",
125
+ "mimetype": "text/x-python",
126
+ "name": "python",
127
+ "nbconvert_exporter": "python",
128
+ "pygments_lexer": "ipython3",
129
+ "version": "3.11.8"
130
+ }
131
+ },
132
+ "nbformat": 4,
133
+ "nbformat_minor": 2
134
+ }
app.py CHANGED
@@ -1,7 +1,17 @@
 
1
  import gradio as gr
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
5
 
6
- iface = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- iface.launch()
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastai.vision.all import *
2
  import gradio as gr
3
 
4
+ categories = 'Giant panda', 'Red panda'
 
5
 
6
+ def classify_image(img):
7
+ pred, idx, probs = learn.predict(img)
8
+ return dict(zip(categories, map(float, probs)))
9
+
10
+ learn = load_learner('model.pkl')
11
+
12
+ image = gr.inputs.Image(shape=(192, 192))
13
+ label = gr.outputs.Label()
14
+
15
+ examples = ['giant_0.jpg', 'red_0.jpg', 'giant_1.jpg', 'red_1.jpg']
16
+ interface = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
17
+ interface.launch(inline=False)
giant_0.jpg ADDED

Git LFS Details

  • SHA256: 3d3904f3e66812aec36b173c2e586b696d0b7fde1b87b65ef52409dfe167d4de
  • Pointer size: 132 Bytes
  • Size of remote file: 2.6 MB
giant_1.jpg ADDED

Git LFS Details

  • SHA256: 2b96cf13c8f915289301189c1ed413ae163704f5cb9e9f7caddf828b07bca389
  • Pointer size: 132 Bytes
  • Size of remote file: 1.84 MB
model.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4baab030dd958a944a65758fc8848880ce0d0a96dbad1661ec9a17592ebc2ac
3
+ size 46964486
red_0.jpg ADDED

Git LFS Details

  • SHA256: b482cfd58baac86b9bb0ecbb9b3c3a0ecc0a3801fa3a256bf7bff87ce3eef479
  • Pointer size: 132 Bytes
  • Size of remote file: 1.64 MB
red_1.jpg ADDED

Git LFS Details

  • SHA256: 183fcba7de9903ee7c85a2a93763d4809e2a14b0d21cee2a7699ce93bc141978
  • Pointer size: 132 Bytes
  • Size of remote file: 1.41 MB