File size: 8,766 Bytes
0e73e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185186c
0e73e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import torch
import torch.nn as nn
# import jieba
import string
import numpy as np
from copy import deepcopy
from tqdm import tqdm
import time
from datetime import datetime
import os
from sklearn.linear_model import LinearRegression
from torch.multiprocessing import Process,Pool

from transformers import BertTokenizer

os.environ['TOKENIZERS_PARALLELISM']='True'
# torch.autograd.set_detect_anomaly(True)

class BaseAttack:
    def __init__(self, name, model, tokenizer, device, max_per, padding,max_length,label_to_id,sentence1_key,sentence2_key):
        self.name = name
        self.model = model
        self.tokenizer = tokenizer
        self.device = device
        self.model = self.model.to(self.device)
        self.model.eval()
        self.padding = padding
        self.max_length = max_length
        self.label_to_id = label_to_id
        self.sentence1_key = sentence1_key
        self.sentence2_key = sentence2_key
        # 修改token个数的最大值
        self.max_per = max_per
        # linear regression model initialization
        # self.linear_regression()
        self.random_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

    def run_attack(self, x):
        pass

    def compute_loss(self, x):
        pass

    def preprocess_function(self,examples,to_device=True):
        # Tokenize the texts
        texts = ((examples[0],) if self.sentence2_key is None else (examples[0], examples[1]))
        result = self.tokenizer(*texts, padding=self.padding, max_length=self.max_length, truncation=True)
        new_result = {}
        for key,item in result.items():
            if to_device:
                new_result[key] = torch.tensor(item).unsqueeze(0).to(self.device)
            else:
                new_result[key] = torch.tensor(item).unsqueeze(0)
        return new_result
    
    def get_pred(self,input_):
        return self.get_prob(input_).logits.argmax(dim=-1)

    def get_prob(self,input_):
        toc = datetime.now()
        batch = self.preprocess_function(input_)
        # batch['gumbel_softmax']=gradient
        # print(batch)
        outputs = self.model(**batch) # get all logits
        tic = datetime.now()
        running_time = (tic-toc).total_seconds()
        return outputs,running_time
    
    def output_analysis(self,outputs):
        # print(outputs)

        all_skim_loss, all_tokens_remained = list(), list()
        all_layer_tokens_remained = [[] for _ in range(len(outputs.layer_tokens_remained))]
        
        all_skim_loss.append(outputs.skim_loss)
        all_tokens_remained.append(outputs.tokens_remained)
        for layer_idx,mac in enumerate(outputs.layer_tokens_remained):
            all_layer_tokens_remained[layer_idx].append(mac)

        skim_loss = torch.mean(torch.stack(all_skim_loss))
        tokens_remained = torch.mean(torch.stack(all_tokens_remained))
        layers_result = [torch.mean(torch.stack(macs)) for i,macs in enumerate(all_layer_tokens_remained)]

        return skim_loss,tokens_remained,layers_result
    
    def load_data(self,model_path_key,mode='train'):
        path = f'flops_count/{model_path_key}/{mode}'
        if os.path.exists(f'{path}/process_data.pth'):
            print(f'loading data from {path}')
            data = torch.load(f'{path}/process_data.pth')
        else:
            time_list = torch.load(f'{path}/time_list.pth')
            ratio_list = torch.load(f'{path}/ratio_list.pth')
            token_num_list = torch.load(f'{path}/text_len_list_tokenizer.pth')

            ratio_list_ = []
            for ratio in ratio_list:
                ratio_list_.append(ratio.item())
            y = np.expand_dims(np.array(ratio_list_),axis=1)   
            # print(x.shape)

            time_list_ = []
            for time,token_num in zip(time_list,token_num_list):
                time_list_.append((time/(token_num*(10**8))))
            x = np.expand_dims(np.array(time_list_),axis=1)
            # print(y.shape)
            
            data = dict()
            data['x']=x
            data['y']=y
            torch.save(data,f'{path}/process_data.pth')

        return data
    
    def predict(self,x):
        return self.w*x+self.b
    
    def linear_regression(self):
        print("="*20)
        print('Linear Regression Generation')
        data_train = self.load_data(self.name,mode='train')
        data_test = self.load_data(self.name,mode='test')
        # print(data_train,data_test)

        reg = LinearRegression().fit(data_train['x'],data_train['y'])
        train_score = reg.score(data_train['x'],data_train['y'])
        test_score = reg.score(data_test['x'],data_test['y'])
        print(f'train set score: {train_score}')
        print(f'test set score: {test_score}')

        self.w = reg.coef_[0][0]
        self.b = reg.intercept_[0]
        print("w:",self.w)
        print("b:",self.b)

        print(self.predict(0.8))


class MyAttack(BaseAttack):
    def __init__(self, name, model, tokenizer, device, max_per, padding, max_length, label_to_id, sentence1_key, sentence2_key):
        super(MyAttack, self).__init__(name, model, tokenizer, device, max_per, padding, max_length, label_to_id, sentence1_key, sentence2_key)
        # self.insert_character = string.punctuation
        self.insert_character = string.digits
        self.insert_character += string.ascii_letters
        # self.insert_character -= """"'/\\"""
        # print(self.insert_character)

        self.origin_ratio = []
        self.attack_ratio = []
        self.layer_result = []
        self.origin_layer_result = []

    # @torch.no_grad()
    # def select_best(self, new_strings):
    #     best_string = None
    #     best_loss = 0
    #     for new_string in new_strings:
    #         new_predicted_loss = self.compute_loss(new_string)
    #         if new_predicted_loss>best_loss:
    #             best_loss = new_predicted_loss
    #             best_string = new_string

    #     assert best_string is not None
    #     return best_string,best_loss

    @torch.no_grad()
    def select_best(self, new_strings):
        # self.model.to('cpu')
        best_string = None
        best_loss = 0
        with Pool(processes=4) as pool:
            loss_list = pool.map(self.compute_loss,new_strings)
        idx = np.argmax(np.array(loss_list))
        best_loss = loss_list[idx]
        best_string = new_strings[idx]
        # self.model.to(self.device)
        # for new_string in new_strings:
        #     new_predicted_loss = self.compute_loss(new_string)
        #     if new_predicted_loss>best_loss:
        #         best_loss = new_predicted_loss
        #         best_string = new_string

        assert best_string is not None
        # self.model.to(self.device)
        return best_string,best_loss

    def compute_loss(self, xxx):
        raise NotImplementedError

    def mutation(self, current_adv_text, grad, modify_pos):
        raise NotImplementedError

    def run_attack(self, text):
        # assert len(text) == 1
        # print(text)
        text[0] = text[0].strip(" .")
        text[1] = text[1].strip(" .")
        print(f'Origin Text: {text}')
        current_adv_text = deepcopy(text)
        # max_per 最多扰动单词的个数
        # pbar = tqdm(range(self.max_per))

        best_loss = 0
        best_tokens_remained = 0
        best_layer_result = None

        output,_ = self.get_prob(current_adv_text)
        origin_skim_loss,origin_ratio_,origin_layer_result_ = self.output_analysis(output)
        print(origin_skim_loss,origin_ratio_)
        self.origin_ratio.append(origin_ratio_.item())
        self.origin_layer_result.append(origin_layer_result_)


        # for it in pbar:
        for _ in range(self.max_per):
            # 得到每个修改的位置
            new_strings = self.mutation(current_adv_text)
            #print(new_strings)
            current_adv_text,current_loss = self.select_best(new_strings)
            # print(new_strings)
            # print(current_adv_text,current_loss,current_tokens_remained)
            if current_loss > best_loss:
                best_adv_text = deepcopy(current_adv_text)
                best_loss = current_loss
            print(best_adv_text)

        output,_ = self.get_prob(best_adv_text)
        _,best_tokens_remained,best_layer_result = self.output_analysis(output)

        self.attack_ratio.append(best_tokens_remained.item())
        self.layer_result.append(best_layer_result)
        print(f'Malicious Text: {best_adv_text}')
        print(f'Origin Ratio: {self.origin_ratio[-1]} Attack Ratio: {self.attack_ratio[-1]}')
        print(f'Layer Result: {self.layer_result[-1]}')

        return best_adv_text,best_loss,best_tokens_remained,best_layer_result