Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
import gradio as gr
|
4 |
+
from langchain_google_genai.chat_models import ChatGoogleGenerativeAI
|
5 |
+
from langchain_cohere import ChatCohere
|
6 |
+
from langchain_core.prompts import ChatPromptTemplate
|
7 |
+
from langchain.schema.output_parser import StrOutputParser
|
8 |
+
|
9 |
+
load_dotenv()
|
10 |
+
|
11 |
+
COHERE_API_KEY = os.getenv('COHERE_API_KEY')
|
12 |
+
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
|
13 |
+
|
14 |
+
#! 1) LOAD THE MODEL
|
15 |
+
def load_model(model: str, temp: float, max_tokens: int):
|
16 |
+
if model == "Cohere Command":
|
17 |
+
return ChatCohere(
|
18 |
+
cohere_api_key=COHERE_API_KEY,
|
19 |
+
max_tokens=max_tokens,
|
20 |
+
temperature=temp
|
21 |
+
)
|
22 |
+
else:
|
23 |
+
return ChatGoogleGenerativeAI(
|
24 |
+
model="gemini-pro",
|
25 |
+
google_api_key=GOOGLE_API_KEY,
|
26 |
+
max_tokens=max_tokens,
|
27 |
+
temperature=temp
|
28 |
+
)
|
29 |
+
|
30 |
+
#! 2) CONSTRUCT THE PROMPT
|
31 |
+
template = """
|
32 |
+
You are a sentiment analysis AI tool, you should accurately analyse given description and predict the underlying sentiment
|
33 |
+
|
34 |
+
Human: Following is the description: {description}
|
35 |
+
"""
|
36 |
+
|
37 |
+
prompt_template = ChatPromptTemplate.from_template(template)
|
38 |
+
|
39 |
+
def submit(model, temperature, max_tokens, input_text):
|
40 |
+
llm = load_model(model, temperature, max_tokens)
|
41 |
+
|
42 |
+
#! 3) SETUP THE CHAIN
|
43 |
+
chain = prompt_template | llm | StrOutputParser()
|
44 |
+
|
45 |
+
#! 4) INVOKE THE CHAIN
|
46 |
+
result = chain.invoke(
|
47 |
+
{
|
48 |
+
"description": input_text
|
49 |
+
}
|
50 |
+
)
|
51 |
+
return result
|
52 |
+
|
53 |
+
def demo():
|
54 |
+
with gr.Blocks() as demo:
|
55 |
+
with gr.Tabs() as tabs:
|
56 |
+
|
57 |
+
with gr.Tab("Model Selection"):
|
58 |
+
with gr.Row():
|
59 |
+
model = gr.Dropdown(choices=["Cohere Command", "Gemini Pro"], label="Select Model")
|
60 |
+
with gr.Row():
|
61 |
+
temperature = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
|
62 |
+
with gr.Row():
|
63 |
+
max_tokens = gr.Slider(minimum=50, maximum=2048, value=150, step=10, label="Max Tokens")
|
64 |
+
|
65 |
+
with gr.Tab("Sentiment Analysis"):
|
66 |
+
with gr.Row():
|
67 |
+
input_text = gr.Textbox(lines=5, placeholder="Enter your text here...", label="Input")
|
68 |
+
with gr.Row():
|
69 |
+
output_text = gr.Textbox(lines=5, placeholder="Output will appear here...", label="Output")
|
70 |
+
with gr.Row():
|
71 |
+
submit_button = gr.Button("Submit")
|
72 |
+
submit_button.click(submit, inputs=[model, temperature, max_tokens, input_text], outputs=output_text)
|
73 |
+
|
74 |
+
demo.launch(share=True)
|
75 |
+
|
76 |
+
if __name__ == "__main__":
|
77 |
+
demo()
|