File size: 30,931 Bytes
a96d22b
13a7a5d
a96d22b
 
 
 
 
 
 
40667c5
a96d22b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40667c5
a96d22b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40667c5
a96d22b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3137439
a96d22b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40667c5
a96d22b
 
 
 
 
 
 
92b61f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
import io
import os
import re
import time
from itertools import islice
from functools import partial
from multiprocessing.pool import ThreadPool
from queue import Queue, Empty
from typing import Callable, Iterable, Iterator, Optional, TypeVar

import gradio as gr
import pandas as pd
import requests.exceptions
from huggingface_hub import InferenceClient, create_repo, whoami, DatasetCard


model_id = "microsoft/Phi-3-mini-4k-instruct"
client = InferenceClient(model_id)
save_dataset_hf_token = os.environ.get("SAVE_DATASET_HF_TOKEN")

MAX_TOTAL_NB_ITEMS = 100  # almost infinite, don't judge me (actually it's because gradio needs a fixed number of components)
MAX_NB_ITEMS_PER_GENERATION_CALL = 10
NUM_ROWS = 100
NUM_VARIANTS = 10
NAMESPACE = "infinite-dataset-hub"
URL = "https://huggingface.co./spaces/infinite-dataset-hub/infinite-dataset-hub"

GENERATE_DATASET_NAMES_FOR_SEARCH_QUERY = (
        "A Machine Learning Practioner is looking for a dataset that matches '{search_query}'. "
        f"Generate a list of {MAX_NB_ITEMS_PER_GENERATION_CALL} names of quality datasets that don't exist but sound plausible and would "
        "be helpful. Feel free to reuse words from the query '{search_query}' to name the datasets. "
        "Every dataset should be about '{search_query}' and have descriptive tags/keywords including the ML task name associated with the dataset (classification, regression, anomaly detection, etc.). Use the following format:\n1. DatasetName1 (tag1, tag2, tag3)\n1. DatasetName2 (tag1, tag2, tag3)"
)

GENERATE_DATASET_CONTENT_FOR_SEARCH_QUERY_AND_NAME_AND_TAGS = (
    "An ML practitioner is looking for a dataset CSV after the query '{search_query}'. "
    "Generate the first 5 rows of a plausible and quality CSV for the dataset '{dataset_name}'. "
    "You can get inspiration from related keywords '{tags}' but most importantly the dataset should correspond to the query '{search_query}'. "
    "Focus on quality text content and use a 'label' or 'labels' column if it makes sense (invent labels, avoid reusing the keywords, be accurate while labelling texts). "
    "Reply using a short description of the dataset with title **Dataset Description:** followed by the CSV content in a code block and with title **CSV Content Preview:**."
)
GENERATE_MORE_ROWS = "Can you give me 10 additional samples in CSV format as well? Use the same CSV header '{csv_header}'."
GENERATE_VARIANTS_WITH_RARITY_AND_LABEL = "Focus on generating samples for the label '{label}' and ideally generate {rarity} samples."
GENERATE_VARIANTS_WITH_RARITY = "Focus on generating {rarity} samples."

RARITIES = ["pretty obvious", "common/regular", "unexpected but useful", "uncommon but still plausible", "rare/niche but still plausible"]
LONG_RARITIES = [
    "obvious",
    "expected",
    "common",
    "regular",
    "unexpected but useful"
    "original but useful",
    "specific but not far-fetched",
    "uncommon but still plausible",
    "rare but still plausible",
    "very niche but still plausible",
]

landing_page_datasets_generated_text = """
1. NewsEventsPredict (classification, media, trend)
2. FinancialForecast (economy, stocks, regression)
3. HealthMonitor (science, real-time, anomaly detection)
4. SportsAnalysis (classification, performance, player tracking)
5. SciLiteracyTools (language modeling, science literacy, text classification)
6. RetailSalesAnalyzer (consumer behavior, sales trend, segmentation)
7. SocialSentimentEcho (social media, emotion analysis, clustering)
8. NewsEventTracker (classification, public awareness, topical clustering)
9. HealthVitalSigns (anomaly detection, biometrics, prediction)
10. GameStockPredict (classification, finance, sports contingency)
"""
default_output = landing_page_datasets_generated_text.strip().split("\n")
assert len(default_output) == MAX_NB_ITEMS_PER_GENERATION_CALL

DATASET_CARD_CONTENT = """
---
license: mit
tags:
- infinite-dataset-hub
- synthetic
---
{title}
_Note: This is an AI-generated dataset so its content may be inaccurate or false_
{content}
**Source of the data:**
The dataset was generated using the [Infinite Dataset Hub]({url}) and {model_id} using the query '{search_query}':
- **Dataset Generation Page**: {dataset_url}
- **Model**: https://huggingface.co./{model_id}
- **More Datasets**: https://huggingface.co./datasets?other=infinite-dataset-hub
"""

css = """
a {
    color: var(--body-text-color);
}
.datasetButton {
    justify-content: start;
    justify-content: left;
}
.tags {
    font-size: var(--button-small-text-size);
    color: var(--body-text-color-subdued);
}
.topButton {
    justify-content: start;
    justify-content: left;
    text-align: left;
    background: transparent;
    box-shadow: none;
    padding-bottom: 0;
}
.topButton::before {
    content: url("data:image/svg+xml,%3Csvg style='color: rgb(209 213 219)' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' aria-hidden='true' focusable='false' role='img' width='1em' height='1em' preserveAspectRatio='xMidYMid meet' viewBox='0 0 25 25'%3E%3Cellipse cx='12.5' cy='5' fill='currentColor' fill-opacity='0.25' rx='7.5' ry='2'%3E%3C/ellipse%3E%3Cpath d='M12.5 15C16.6421 15 20 14.1046 20 13V20C20 21.1046 16.6421 22 12.5 22C8.35786 22 5 21.1046 5 20V13C5 14.1046 8.35786 15 12.5 15Z' fill='currentColor' opacity='0.5'%3E%3C/path%3E%3Cpath d='M12.5 7C16.6421 7 20 6.10457 20 5V11.5C20 12.6046 16.6421 13.5 12.5 13.5C8.35786 13.5 5 12.6046 5 11.5V5C5 6.10457 8.35786 7 12.5 7Z' fill='currentColor' opacity='0.5'%3E%3C/path%3E%3Cpath d='M5.23628 12C5.08204 12.1598 5 12.8273 5 13C5 14.1046 8.35786 15 12.5 15C16.6421 15 20 14.1046 20 13C20 12.8273 19.918 12.1598 19.7637 12C18.9311 12.8626 15.9947 13.5 12.5 13.5C9.0053 13.5 6.06886 12.8626 5.23628 12Z' fill='currentColor'%3E%3C/path%3E%3C/svg%3E");
    margin-right: .25rem;
    margin-left: -.125rem;
    margin-top: .25rem;
}
.bottomButton {
    justify-content: start;
    justify-content: left;
    text-align: left;
    background: transparent;
    box-shadow: none;
    font-size: var(--button-small-text-size);
    color: var(--body-text-color-subdued);
    padding-top: 0;
    align-items: baseline;
}
.bottomButton::before {
    content: 'tags:';
    margin-right: .25rem;
}
.buttonsGroup {
    background: transparent;
}
.buttonsGroup:hover {
    background: var(--input-background-fill);
}
.buttonsGroup div {
    background: transparent;
}
.insivibleButtonGroup {
    display: none;
}
@keyframes placeHolderShimmer{
    0%{
        background-position: -468px 0
    }
    100%{
        background-position: 468px 0
    }
}
.linear-background {
    animation-duration: 1s;
    animation-fill-mode: forwards;
    animation-iteration-count: infinite;
    animation-name: placeHolderShimmer;
    animation-timing-function: linear;
    background-image: linear-gradient(to right, var(--body-text-color-subdued) 8%, #dddddd11 18%, var(--body-text-color-subdued) 33%);
    background-size: 1000px 104px;
    color: transparent;
    background-clip: text;
}
.settings {
    background: transparent;
}
.settings button span {
    color: var(--body-text-color-subdued);
}
"""


with gr.Blocks(css=css) as demo:
    generated_texts_state = gr.State((landing_page_datasets_generated_text,))
    with gr.Column() as search_page:
        with gr.Row():
            with gr.Column(scale=10):
                gr.Markdown(
                    "# 🤗 Infinite Dataset Hub ♾️\n\n"
                    "An endless catalog of datasets, created just for you by an AI model.\n\n"
                )
                with gr.Row():
                    search_bar = gr.Textbox(max_lines=1, placeholder="Search datasets, get infinite results", show_label=False, container=False, scale=9)
                    search_button = gr.Button("🔍", variant="primary", scale=1)
                button_groups: list[gr.Group] = []
                buttons: list[gr.Button] = []
                for i in range(MAX_TOTAL_NB_ITEMS):
                    if i < len(default_output):
                        line = default_output[i]
                        dataset_name, tags = line.split(".", 1)[1].strip(" )").split(" (", 1)
                        group_classes = "buttonsGroup"
                        dataset_name_classes = "topButton"
                        tags_classes = "bottomButton"
                    else:
                        dataset_name, tags = "⬜⬜⬜⬜⬜⬜", "░░░░, ░░░░, ░░░░"
                        group_classes = "buttonsGroup insivibleButtonGroup"
                        dataset_name_classes = "topButton linear-background"
                        tags_classes = "bottomButton linear-background"
                    with gr.Group(elem_classes=group_classes) as button_group:
                        button_groups.append(button_group)
                        buttons.append(gr.Button(dataset_name, elem_classes=dataset_name_classes))
                        buttons.append(gr.Button(tags, elem_classes=tags_classes))

                load_more_datasets = gr.Button("Load more datasets")  # TODO: dosable when reaching end of page
                gr.Markdown(f"_powered by [{model_id}](https://huggingface.co./{model_id})_")
            with gr.Column(scale=4, min_width="200px"):
                with gr.Accordion("Settings", open=False, elem_classes="settings"):
                    gr.Markdown("Save datasets to your account")
                    gr.LoginButton()
                    select_namespace_dropdown = gr.Dropdown(choices=[NAMESPACE], value=NAMESPACE, label="Select user or organization", visible=False)
                    gr.Markdown("Save datasets as public or private datasets")
                    visibility_radio = gr.Radio(["public", "private"], value="public", container=False, interactive=False)
    with gr.Column(visible=False) as dataset_page:
        gr.Markdown(
            "# 🤗 Infinite Dataset Hub ♾️\n\n"
            "An endless catalog of datasets, created just for you.\n\n"
        )
        dataset_title = gr.Markdown()
        gr.Markdown("_Note: This is an AI-generated dataset so its content may be inaccurate or false_")
        dataset_content = gr.Markdown()
        generate_full_dataset_button = gr.Button("Generate Full Dataset", variant="primary")
        dataset_dataframe = gr.DataFrame(visible=False, interactive=False, wrap=True)
        save_dataset_button = gr.Button("💾 Save Dataset", variant="primary", visible=False)
        open_dataset_message = gr.Markdown("", visible=False)
        dataset_share_button = gr.Button("Share Dataset URL")
        dataset_share_textbox = gr.Textbox(visible=False, show_copy_button=True, label="Copy this URL:", interactive=False, show_label=True)
        back_button = gr.Button("< Back", size="sm")

    ###################################
    #
    #       Utils
    #
    ###################################

    T = TypeVar("T")

    def batched(it: Iterable[T], n: int) -> Iterator[list[T]]:
        it = iter(it)
        while batch := list(islice(it, n)):
            yield batch


    def stream_reponse(msg: str, generated_texts: tuple[str] = (), max_tokens=500) -> Iterator[str]:
        messages = [
            {"role": "user", "content": msg}
        ] + [
            item
            for generated_text in generated_texts
            for item in [
                {"role": "assistant", "content": generated_text},
                {"role": "user", "content": "Can you generate more ?"},
            ]
        ]
        for _ in range(3):
            try:
                for message in client.chat_completion(
                    messages=messages,
                    max_tokens=max_tokens,
                    stream=True,
                    top_p=0.8,
                    seed=42,
                ):
                    yield message.choices[0].delta.content
            except requests.exceptions.ConnectionError as e:
                print(e + "\n\nRetrying in 1sec")
                time.sleep(1)
                continue
            break


    def gen_datasets_line_by_line(search_query: str, generated_texts: tuple[str] = ()) -> Iterator[str]:
        search_query = search_query or ""
        search_query = search_query[:1000] if search_query.strip() else ""
        generated_text = ""
        current_line = ""
        for token in stream_reponse(
            GENERATE_DATASET_NAMES_FOR_SEARCH_QUERY.format(search_query=search_query),
            generated_texts=generated_texts,
        ):
            current_line += token
            if current_line.endswith("\n"):
                yield current_line
                generated_text += current_line
                current_line = ""
        yield current_line
        generated_text += current_line
        print("-----\n\n" + generated_text)


    def gen_dataset_content(search_query: str, dataset_name: str, tags: str) -> Iterator[str]:
        search_query = search_query or ""
        search_query = search_query[:1000] if search_query.strip() else ""
        generated_text = ""
        for token in stream_reponse(GENERATE_DATASET_CONTENT_FOR_SEARCH_QUERY_AND_NAME_AND_TAGS.format(
            search_query=search_query,
            dataset_name=dataset_name,
            tags=tags,
        ), max_tokens=1500):
            generated_text += token
            yield generated_text
        print("-----\n\n" + generated_text)


    def _write_generator_to_queue(queue: Queue, func: Callable[..., Iterable], kwargs: dict) -> None:
        for i, result in enumerate(func(**kwargs)):
            queue.put(result)
        return None


    def iflatmap_unordered(
        func: Callable[..., Iterable[T]],
        *,
        kwargs_iterable: Iterable[dict],
    ) -> Iterable[T]:
        queue = Queue()
        with ThreadPool() as pool:
            async_results = [
                pool.apply_async(_write_generator_to_queue, (queue, func, kwargs)) for kwargs in kwargs_iterable
            ]
            try:
                while True:
                    try:
                        yield queue.get(timeout=0.05)
                    except Empty:
                        if all(async_result.ready() for async_result in async_results) and queue.empty():
                            break
            finally:
                # we get the result in case there's an error to raise
                [async_result.get(timeout=0.05) for async_result in async_results]


    def generate_partial_dataset(title: str, content: str, search_query: str, variant: str, csv_header: str, output: list[dict[str, str]], indices_to_generate: list[int], max_tokens=1500) -> Iterator[int]:
        dataset_name, tags = title.strip("# ").split("\ntags:", 1)
        dataset_name, tags = dataset_name.strip(), tags.strip()
        messages = [
            {
                "role": "user",
                "content": GENERATE_DATASET_CONTENT_FOR_SEARCH_QUERY_AND_NAME_AND_TAGS.format(
                    dataset_name=dataset_name,
                    tags=tags,
                    search_query=search_query,
                )
            },
            {"role": "assistant", "content": title + "\n\n" + content},
            {"role": "user", "content": GENERATE_MORE_ROWS.format(csv_header=csv_header) + " " + variant},
        ]
        for _ in range(3):
            generated_text = ""
            generated_csv = ""
            current_line = ""
            nb_samples = 0
            _in_csv = False
            try:
                for message in client.chat_completion(
                    messages=messages,
                    max_tokens=max_tokens,
                    stream=True,
                    top_p=0.8,
                    seed=42,
                ):
                    if nb_samples >= len(indices_to_generate):
                        break
                    current_line += message.choices[0].delta.content
                    generated_text += message.choices[0].delta.content
                    if current_line.endswith("\n"):
                        _in_csv = _in_csv ^ current_line.lstrip().startswith("```")
                        if current_line.strip() and _in_csv and not current_line.lstrip().startswith("```"):
                            generated_csv += current_line
                            try:
                                generated_df = parse_csv_df(generated_csv.strip(), csv_header=csv_header)
                                if len(generated_df) > nb_samples:
                                    output[indices_to_generate[nb_samples]] = generated_df.iloc[-1].to_dict()
                                    nb_samples += 1
                                    yield 1
                            except Exception:
                                pass
                        current_line = ""
            except requests.exceptions.ConnectionError as e:
                print(e + "\n\nRetrying in 1sec")
                time.sleep(1)
                continue
            break
        # for debugging
        # with open(f".output{indices_to_generate[0]}.txt", "w") as f:
        #     f.write(generated_text)


    def generate_variants(preview_df: pd.DataFrame):
        label_candidate_columns = [column for column in preview_df.columns if "label" in column.lower()]
        if label_candidate_columns:
            labels = preview_df[label_candidate_columns[0]].unique()
            if len(labels) > 1:
                return [
                    GENERATE_VARIANTS_WITH_RARITY_AND_LABEL.format(rarity=rarity, label=label)
                    for rarity in RARITIES
                    for label in labels
                ]
        return [
            GENERATE_VARIANTS_WITH_RARITY.format(rarity=rarity)
            for rarity in LONG_RARITIES
        ]


    def parse_preview_df(content: str) -> tuple[str, pd.DataFrame]:
        _in_csv = False
        csv = "\n".join(
            line for line in content.split("\n") if line.strip()
            and (_in_csv := (_in_csv ^ line.lstrip().startswith("```")))
            and not line.lstrip().startswith("```")
        )
        if not csv:
            raise gr.Error("Failed to parse CSV Preview")
        return csv.split("\n")[0], parse_csv_df(csv)


    def parse_csv_df(csv: str, csv_header: Optional[str] = None) -> pd.DataFrame:
        # Fix generation mistake when providing a list that is not in quotes
        for match in re.finditer(r'''(?!")\[(["'][\w ]+["'][, ]*)+\](?!")''', csv):
            span = match.string[match.start() : match.end()]
            csv = csv.replace(span, '"' + span.replace('"', "'") + '"', 1)
        # Add header if missing
        if csv_header and csv.strip().split("\n")[0] != csv_header:
            csv = csv_header + "\n" + csv
        # Read CSV
        df = pd.read_csv(io.StringIO(csv), skipinitialspace=True)
        return df


    ###################################
    #
    #       Buttons
    #
    ###################################


    def _search_datasets(search_query):
        yield {generated_texts_state: []}
        yield {
            button_group: gr.Group(elem_classes="buttonsGroup insivibleButtonGroup")
            for button_group in button_groups[MAX_NB_ITEMS_PER_GENERATION_CALL:]
        }
        yield {
            k: v
            for dataset_name_button, tags_button in batched(buttons, 2)
            for k, v in {
                dataset_name_button: gr.Button("⬜⬜⬜⬜⬜⬜", elem_classes="topButton linear-background"),
                tags_button: gr.Button("░░░░, ░░░░, ░░░░", elem_classes="bottomButton linear-background")
            }.items()
        }
        current_item_idx = 0
        generated_text = ""
        for line in gen_datasets_line_by_line(search_query):
            if "I'm sorry" in line or "against Microsoft's use case policy" in line:
                raise gr.Error("Error: inappropriate content")
            if current_item_idx >= MAX_NB_ITEMS_PER_GENERATION_CALL:
                return
            if line.strip() and line.strip().split(".", 1)[0].isnumeric():
                try:
                    dataset_name, tags = line.strip().split(".", 1)[1].strip(" )").split(" (", 1)
                except ValueError:
                    dataset_name, tags = line.strip().split(".", 1)[1].strip(" )").split(" ", 1)
                dataset_name, tags = dataset_name.strip("()[]* "), tags.strip("()[]* ")
                generated_text += line
                yield {
                    buttons[2 * current_item_idx]: gr.Button(dataset_name, elem_classes="topButton"),
                    buttons[2 * current_item_idx + 1]: gr.Button(tags, elem_classes="bottomButton"),
                    generated_texts_state: (generated_text,),
                }
                current_item_idx += 1


    @search_button.click(inputs=search_bar, outputs=button_groups + buttons + [generated_texts_state])
    def search_dataset_from_search_button(search_query):
        yield from _search_datasets(search_query)


    @search_bar.submit(inputs=search_bar, outputs=button_groups + buttons + [generated_texts_state])
    def search_dataset_from_search_bar(search_query):
        yield from _search_datasets(search_query)


    @load_more_datasets.click(inputs=[search_bar, generated_texts_state], outputs=button_groups + buttons + [generated_texts_state])
    def search_more_datasets(search_query, generated_texts):
        current_item_idx = initial_item_idx = len(generated_texts) * MAX_NB_ITEMS_PER_GENERATION_CALL
        yield {
            button_group: gr.Group(elem_classes="buttonsGroup")
            for button_group in button_groups[len(generated_texts) * MAX_NB_ITEMS_PER_GENERATION_CALL:(len(generated_texts) + 1) * MAX_NB_ITEMS_PER_GENERATION_CALL]
        }
        generated_text = ""
        for line in gen_datasets_line_by_line(search_query, generated_texts=generated_texts):
            if "I'm sorry" in line or "against Microsoft's use case policy" in line:
                raise gr.Error("Error: inappropriate content")
            if current_item_idx - initial_item_idx >= MAX_NB_ITEMS_PER_GENERATION_CALL:
                return
            if line.strip() and line.strip().split(".", 1)[0].isnumeric():
                try:
                    dataset_name, tags = line.strip().split(".", 1)[1].strip(" )").split(" (", 1)
                except ValueError:
                    dataset_name, tags = line.strip().split(".", 1)[1].strip(" )").split(" ", 1) [0], ""
                dataset_name, tags = dataset_name.strip("()[]* "), tags.strip("()[]* ")
                generated_text += line
                yield {
                    buttons[2 * current_item_idx]: gr.Button(dataset_name, elem_classes="topButton"),
                    buttons[2 * current_item_idx + 1]: gr.Button(tags, elem_classes="bottomButton"),
                    generated_texts_state: (*generated_texts, generated_text),
                }
                current_item_idx += 1

    def _show_dataset(search_query, dataset_name, tags):
        yield {
            search_page: gr.Column(visible=False),
            dataset_page: gr.Column(visible=True),
            dataset_title: f"# {dataset_name}\n\n tags: {tags}",
            dataset_share_textbox: gr.Textbox(visible=False),
            dataset_dataframe: gr.DataFrame(visible=False),
            generate_full_dataset_button: gr.Button(interactive=True),
            save_dataset_button: gr.Button(visible=False),
            open_dataset_message: gr.Markdown(visible=False)
        }
        for generated_text in gen_dataset_content(search_query=search_query, dataset_name=dataset_name, tags=tags):
            yield {dataset_content: generated_text}


    show_dataset_inputs = [search_bar, *buttons]
    show_dataset_outputs = [search_page, dataset_page, dataset_title, dataset_content, generate_full_dataset_button, dataset_dataframe, save_dataset_button, open_dataset_message, dataset_share_textbox]
    scroll_to_top_js = """
    function (...args) {
        console.log(args);
        if ('parentIFrame' in window) {
            window.parentIFrame.scrollTo({top: 0, behavior:'smooth'});
        } else {
            window.scrollTo({ top: 0 });
        }
        return args;
    }
    """

    def show_dataset_from_button(search_query, *buttons_values, i):
        dataset_name, tags = buttons_values[2 * i : 2 * i + 2]
        yield from _show_dataset(search_query, dataset_name, tags)
    
    for i, (dataset_name_button, tags_button) in enumerate(batched(buttons, 2)):
        dataset_name_button.click(partial(show_dataset_from_button, i=i), inputs=show_dataset_inputs, outputs=show_dataset_outputs, js=scroll_to_top_js)
        tags_button.click(partial(show_dataset_from_button, i=i), inputs=show_dataset_inputs, outputs=show_dataset_outputs, js=scroll_to_top_js)


    @back_button.click(outputs=[search_page, dataset_page], js=scroll_to_top_js)
    def show_search_page():
        return gr.Column(visible=True), gr.Column(visible=False)


    @generate_full_dataset_button.click(inputs=[dataset_title, dataset_content, search_bar, select_namespace_dropdown, visibility_radio], outputs=[dataset_dataframe, generate_full_dataset_button, save_dataset_button])
    def generate_full_dataset(title, content, search_query, namespace, visability):
        dataset_name, tags = title.strip("# ").split("\ntags:", 1)
        dataset_name, tags = dataset_name.strip(), tags.strip()
        csv_header, preview_df = parse_preview_df(content)
        # Remove dummy "id" columns
        for column_name, values in preview_df.to_dict(orient="series").items():
            try:
                if [int(v) for v in values] == list(range(len(preview_df))):
                    preview_df = preview_df.drop(columns=column_name)
                if [int(v) for v in values] == list(range(1, len(preview_df) + 1)):
                    preview_df = preview_df.drop(columns=column_name)
            except Exception:
                pass
        columns = list(preview_df)
        output: list[Optional[dict]] = [None] * NUM_ROWS
        output[:len(preview_df)] = [{"idx": i, **x} for i, x in enumerate(preview_df.to_dict(orient="records"))]
        yield {
            dataset_dataframe: gr.DataFrame(pd.DataFrame([{"idx": i, **x} for i, x in enumerate(output) if x]), visible=True),
            generate_full_dataset_button: gr.Button(interactive=False),
            save_dataset_button: gr.Button(f"💾 Save Dataset {namespace}/{dataset_name}" + (" (private)" if visability != "public" else ""), visible=True, interactive=False)
        }
        kwargs_iterable = [
            {
                "title": title,
                "content": content,
                "search_query": search_query,
                "variant": variant,
                "csv_header": csv_header,
                "output": output,
                "indices_to_generate": list(range(len(preview_df) + i, NUM_ROWS, NUM_VARIANTS)),
            }
            for i, variant in enumerate(islice(generate_variants(preview_df), NUM_VARIANTS))
        ]
        for _ in iflatmap_unordered(generate_partial_dataset, kwargs_iterable=kwargs_iterable):
            yield {dataset_dataframe: pd.DataFrame([{"idx": i, **{column_name: x.get(column_name) for column_name in columns}} for i, x in enumerate(output) if x])}
        yield {save_dataset_button: gr.Button(interactive=True)}
        print(f"Generated {dataset_name}!")


    @save_dataset_button.click(inputs=[dataset_title, dataset_content, search_bar, dataset_dataframe, select_namespace_dropdown, visibility_radio], outputs=[save_dataset_button, open_dataset_message])
    def save_dataset(title: str, content: str, search_query: str, df: pd.DataFrame, namespace: str, visability: str, oauth_token: Optional[gr.OAuthToken]):
        dataset_name, tags = title.strip("# ").split("\ntags:", 1)
        dataset_name, tags = dataset_name.strip(), tags.strip()
        token = oauth_token.token if oauth_token else save_dataset_hf_token
        repo_id = f"{namespace}/{dataset_name}"
        dataset_url = f"{URL}?q={search_query.replace(' ', '+')}&dataset={dataset_name.replace(' ', '+')}&tags={tags.replace(' ', '+')}"
        gr.Info("Saving dataset...")
        yield {save_dataset_button: gr.Button(interactive=False)}
        create_repo(repo_id=repo_id, repo_type="dataset", private=visability!="public", exist_ok=True, token=token)
        df.to_csv(f"hf://datasets/{repo_id}/data.csv", storage_options={"token": token}, index=False)
        DatasetCard(DATASET_CARD_CONTENT.format(title=title, content=content, url=URL, dataset_url=dataset_url, model_id=model_id, search_query=search_query)).push_to_hub(repo_id=repo_id, repo_type="dataset", token=token)
        gr.Info(f"✅ Dataset saved at {repo_id}")
        additional_message = "PS: You can also save datasets under your account in the Settings ;)"
        yield {open_dataset_message: gr.Markdown(f"# 🎉 Yay ! Your dataset has been saved to [{repo_id}](https://huggingface.co./datasets/{repo_id}) !\n\nDataset link: [https://huggingface.co./datasets/{repo_id}](https://huggingface.co./datasets/{repo_id})\n\n{additional_message}", visible=True)}
        print(f"Saved {dataset_name}!")


    @dataset_share_button.click(inputs=[dataset_title, search_bar], outputs=[dataset_share_textbox])
    def show_dataset_url(title, search_query):
        dataset_name, tags = title.strip("# ").split("\ntags:", 1)
        dataset_name, tags = dataset_name.strip(), tags.strip()
        return gr.Textbox(
            f"{URL}?q={search_query.replace(' ', '+')}&dataset={dataset_name.replace(' ', '+')}&tags={tags.replace(' ', '+')}",
            visible=True,
        )

    @demo.load(outputs=show_dataset_outputs + button_groups + buttons + [generated_texts_state] + [select_namespace_dropdown, visibility_radio])
    def load_app(request: gr.Request, oauth_token: Optional[gr.OAuthToken]):
        if oauth_token:
            user_info = whoami(oauth_token.token)
            yield {
                select_namespace_dropdown: gr.Dropdown(
                        choices=[user_info["name"]] + [org_info["name"] for org_info in user_info["orgs"]],
                        value=user_info["name"],
                        visible=True,
                    ),
                visibility_radio: gr.Radio(interactive=True),
                }
        query_params = dict(request.query_params)
        if "dataset" in query_params:
            yield from _show_dataset(
                search_query=query_params.get("q", query_params["dataset"]),
                dataset_name=query_params["dataset"],
                tags=query_params.get("tags", "")
            )
        elif "q" in query_params:
            yield {search_bar: query_params["q"]}
            yield from _search_datasets(query_params["q"])
        else:
            yield {search_page: gr.Column(visible=True)}


demo.launch()