Spaces:
Sleeping
Sleeping
File size: 30,931 Bytes
a96d22b 13a7a5d a96d22b 40667c5 a96d22b 40667c5 a96d22b 40667c5 a96d22b 3137439 a96d22b 40667c5 a96d22b 92b61f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 |
import io
import os
import re
import time
from itertools import islice
from functools import partial
from multiprocessing.pool import ThreadPool
from queue import Queue, Empty
from typing import Callable, Iterable, Iterator, Optional, TypeVar
import gradio as gr
import pandas as pd
import requests.exceptions
from huggingface_hub import InferenceClient, create_repo, whoami, DatasetCard
model_id = "microsoft/Phi-3-mini-4k-instruct"
client = InferenceClient(model_id)
save_dataset_hf_token = os.environ.get("SAVE_DATASET_HF_TOKEN")
MAX_TOTAL_NB_ITEMS = 100 # almost infinite, don't judge me (actually it's because gradio needs a fixed number of components)
MAX_NB_ITEMS_PER_GENERATION_CALL = 10
NUM_ROWS = 100
NUM_VARIANTS = 10
NAMESPACE = "infinite-dataset-hub"
URL = "https://huggingface.co./spaces/infinite-dataset-hub/infinite-dataset-hub"
GENERATE_DATASET_NAMES_FOR_SEARCH_QUERY = (
"A Machine Learning Practioner is looking for a dataset that matches '{search_query}'. "
f"Generate a list of {MAX_NB_ITEMS_PER_GENERATION_CALL} names of quality datasets that don't exist but sound plausible and would "
"be helpful. Feel free to reuse words from the query '{search_query}' to name the datasets. "
"Every dataset should be about '{search_query}' and have descriptive tags/keywords including the ML task name associated with the dataset (classification, regression, anomaly detection, etc.). Use the following format:\n1. DatasetName1 (tag1, tag2, tag3)\n1. DatasetName2 (tag1, tag2, tag3)"
)
GENERATE_DATASET_CONTENT_FOR_SEARCH_QUERY_AND_NAME_AND_TAGS = (
"An ML practitioner is looking for a dataset CSV after the query '{search_query}'. "
"Generate the first 5 rows of a plausible and quality CSV for the dataset '{dataset_name}'. "
"You can get inspiration from related keywords '{tags}' but most importantly the dataset should correspond to the query '{search_query}'. "
"Focus on quality text content and use a 'label' or 'labels' column if it makes sense (invent labels, avoid reusing the keywords, be accurate while labelling texts). "
"Reply using a short description of the dataset with title **Dataset Description:** followed by the CSV content in a code block and with title **CSV Content Preview:**."
)
GENERATE_MORE_ROWS = "Can you give me 10 additional samples in CSV format as well? Use the same CSV header '{csv_header}'."
GENERATE_VARIANTS_WITH_RARITY_AND_LABEL = "Focus on generating samples for the label '{label}' and ideally generate {rarity} samples."
GENERATE_VARIANTS_WITH_RARITY = "Focus on generating {rarity} samples."
RARITIES = ["pretty obvious", "common/regular", "unexpected but useful", "uncommon but still plausible", "rare/niche but still plausible"]
LONG_RARITIES = [
"obvious",
"expected",
"common",
"regular",
"unexpected but useful"
"original but useful",
"specific but not far-fetched",
"uncommon but still plausible",
"rare but still plausible",
"very niche but still plausible",
]
landing_page_datasets_generated_text = """
1. NewsEventsPredict (classification, media, trend)
2. FinancialForecast (economy, stocks, regression)
3. HealthMonitor (science, real-time, anomaly detection)
4. SportsAnalysis (classification, performance, player tracking)
5. SciLiteracyTools (language modeling, science literacy, text classification)
6. RetailSalesAnalyzer (consumer behavior, sales trend, segmentation)
7. SocialSentimentEcho (social media, emotion analysis, clustering)
8. NewsEventTracker (classification, public awareness, topical clustering)
9. HealthVitalSigns (anomaly detection, biometrics, prediction)
10. GameStockPredict (classification, finance, sports contingency)
"""
default_output = landing_page_datasets_generated_text.strip().split("\n")
assert len(default_output) == MAX_NB_ITEMS_PER_GENERATION_CALL
DATASET_CARD_CONTENT = """
---
license: mit
tags:
- infinite-dataset-hub
- synthetic
---
{title}
_Note: This is an AI-generated dataset so its content may be inaccurate or false_
{content}
**Source of the data:**
The dataset was generated using the [Infinite Dataset Hub]({url}) and {model_id} using the query '{search_query}':
- **Dataset Generation Page**: {dataset_url}
- **Model**: https://huggingface.co./{model_id}
- **More Datasets**: https://huggingface.co./datasets?other=infinite-dataset-hub
"""
css = """
a {
color: var(--body-text-color);
}
.datasetButton {
justify-content: start;
justify-content: left;
}
.tags {
font-size: var(--button-small-text-size);
color: var(--body-text-color-subdued);
}
.topButton {
justify-content: start;
justify-content: left;
text-align: left;
background: transparent;
box-shadow: none;
padding-bottom: 0;
}
.topButton::before {
content: url("data:image/svg+xml,%3Csvg style='color: rgb(209 213 219)' xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' aria-hidden='true' focusable='false' role='img' width='1em' height='1em' preserveAspectRatio='xMidYMid meet' viewBox='0 0 25 25'%3E%3Cellipse cx='12.5' cy='5' fill='currentColor' fill-opacity='0.25' rx='7.5' ry='2'%3E%3C/ellipse%3E%3Cpath d='M12.5 15C16.6421 15 20 14.1046 20 13V20C20 21.1046 16.6421 22 12.5 22C8.35786 22 5 21.1046 5 20V13C5 14.1046 8.35786 15 12.5 15Z' fill='currentColor' opacity='0.5'%3E%3C/path%3E%3Cpath d='M12.5 7C16.6421 7 20 6.10457 20 5V11.5C20 12.6046 16.6421 13.5 12.5 13.5C8.35786 13.5 5 12.6046 5 11.5V5C5 6.10457 8.35786 7 12.5 7Z' fill='currentColor' opacity='0.5'%3E%3C/path%3E%3Cpath d='M5.23628 12C5.08204 12.1598 5 12.8273 5 13C5 14.1046 8.35786 15 12.5 15C16.6421 15 20 14.1046 20 13C20 12.8273 19.918 12.1598 19.7637 12C18.9311 12.8626 15.9947 13.5 12.5 13.5C9.0053 13.5 6.06886 12.8626 5.23628 12Z' fill='currentColor'%3E%3C/path%3E%3C/svg%3E");
margin-right: .25rem;
margin-left: -.125rem;
margin-top: .25rem;
}
.bottomButton {
justify-content: start;
justify-content: left;
text-align: left;
background: transparent;
box-shadow: none;
font-size: var(--button-small-text-size);
color: var(--body-text-color-subdued);
padding-top: 0;
align-items: baseline;
}
.bottomButton::before {
content: 'tags:';
margin-right: .25rem;
}
.buttonsGroup {
background: transparent;
}
.buttonsGroup:hover {
background: var(--input-background-fill);
}
.buttonsGroup div {
background: transparent;
}
.insivibleButtonGroup {
display: none;
}
@keyframes placeHolderShimmer{
0%{
background-position: -468px 0
}
100%{
background-position: 468px 0
}
}
.linear-background {
animation-duration: 1s;
animation-fill-mode: forwards;
animation-iteration-count: infinite;
animation-name: placeHolderShimmer;
animation-timing-function: linear;
background-image: linear-gradient(to right, var(--body-text-color-subdued) 8%, #dddddd11 18%, var(--body-text-color-subdued) 33%);
background-size: 1000px 104px;
color: transparent;
background-clip: text;
}
.settings {
background: transparent;
}
.settings button span {
color: var(--body-text-color-subdued);
}
"""
with gr.Blocks(css=css) as demo:
generated_texts_state = gr.State((landing_page_datasets_generated_text,))
with gr.Column() as search_page:
with gr.Row():
with gr.Column(scale=10):
gr.Markdown(
"# 🤗 Infinite Dataset Hub ♾️\n\n"
"An endless catalog of datasets, created just for you by an AI model.\n\n"
)
with gr.Row():
search_bar = gr.Textbox(max_lines=1, placeholder="Search datasets, get infinite results", show_label=False, container=False, scale=9)
search_button = gr.Button("🔍", variant="primary", scale=1)
button_groups: list[gr.Group] = []
buttons: list[gr.Button] = []
for i in range(MAX_TOTAL_NB_ITEMS):
if i < len(default_output):
line = default_output[i]
dataset_name, tags = line.split(".", 1)[1].strip(" )").split(" (", 1)
group_classes = "buttonsGroup"
dataset_name_classes = "topButton"
tags_classes = "bottomButton"
else:
dataset_name, tags = "⬜⬜⬜⬜⬜⬜", "░░░░, ░░░░, ░░░░"
group_classes = "buttonsGroup insivibleButtonGroup"
dataset_name_classes = "topButton linear-background"
tags_classes = "bottomButton linear-background"
with gr.Group(elem_classes=group_classes) as button_group:
button_groups.append(button_group)
buttons.append(gr.Button(dataset_name, elem_classes=dataset_name_classes))
buttons.append(gr.Button(tags, elem_classes=tags_classes))
load_more_datasets = gr.Button("Load more datasets") # TODO: dosable when reaching end of page
gr.Markdown(f"_powered by [{model_id}](https://huggingface.co./{model_id})_")
with gr.Column(scale=4, min_width="200px"):
with gr.Accordion("Settings", open=False, elem_classes="settings"):
gr.Markdown("Save datasets to your account")
gr.LoginButton()
select_namespace_dropdown = gr.Dropdown(choices=[NAMESPACE], value=NAMESPACE, label="Select user or organization", visible=False)
gr.Markdown("Save datasets as public or private datasets")
visibility_radio = gr.Radio(["public", "private"], value="public", container=False, interactive=False)
with gr.Column(visible=False) as dataset_page:
gr.Markdown(
"# 🤗 Infinite Dataset Hub ♾️\n\n"
"An endless catalog of datasets, created just for you.\n\n"
)
dataset_title = gr.Markdown()
gr.Markdown("_Note: This is an AI-generated dataset so its content may be inaccurate or false_")
dataset_content = gr.Markdown()
generate_full_dataset_button = gr.Button("Generate Full Dataset", variant="primary")
dataset_dataframe = gr.DataFrame(visible=False, interactive=False, wrap=True)
save_dataset_button = gr.Button("💾 Save Dataset", variant="primary", visible=False)
open_dataset_message = gr.Markdown("", visible=False)
dataset_share_button = gr.Button("Share Dataset URL")
dataset_share_textbox = gr.Textbox(visible=False, show_copy_button=True, label="Copy this URL:", interactive=False, show_label=True)
back_button = gr.Button("< Back", size="sm")
###################################
#
# Utils
#
###################################
T = TypeVar("T")
def batched(it: Iterable[T], n: int) -> Iterator[list[T]]:
it = iter(it)
while batch := list(islice(it, n)):
yield batch
def stream_reponse(msg: str, generated_texts: tuple[str] = (), max_tokens=500) -> Iterator[str]:
messages = [
{"role": "user", "content": msg}
] + [
item
for generated_text in generated_texts
for item in [
{"role": "assistant", "content": generated_text},
{"role": "user", "content": "Can you generate more ?"},
]
]
for _ in range(3):
try:
for message in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
top_p=0.8,
seed=42,
):
yield message.choices[0].delta.content
except requests.exceptions.ConnectionError as e:
print(e + "\n\nRetrying in 1sec")
time.sleep(1)
continue
break
def gen_datasets_line_by_line(search_query: str, generated_texts: tuple[str] = ()) -> Iterator[str]:
search_query = search_query or ""
search_query = search_query[:1000] if search_query.strip() else ""
generated_text = ""
current_line = ""
for token in stream_reponse(
GENERATE_DATASET_NAMES_FOR_SEARCH_QUERY.format(search_query=search_query),
generated_texts=generated_texts,
):
current_line += token
if current_line.endswith("\n"):
yield current_line
generated_text += current_line
current_line = ""
yield current_line
generated_text += current_line
print("-----\n\n" + generated_text)
def gen_dataset_content(search_query: str, dataset_name: str, tags: str) -> Iterator[str]:
search_query = search_query or ""
search_query = search_query[:1000] if search_query.strip() else ""
generated_text = ""
for token in stream_reponse(GENERATE_DATASET_CONTENT_FOR_SEARCH_QUERY_AND_NAME_AND_TAGS.format(
search_query=search_query,
dataset_name=dataset_name,
tags=tags,
), max_tokens=1500):
generated_text += token
yield generated_text
print("-----\n\n" + generated_text)
def _write_generator_to_queue(queue: Queue, func: Callable[..., Iterable], kwargs: dict) -> None:
for i, result in enumerate(func(**kwargs)):
queue.put(result)
return None
def iflatmap_unordered(
func: Callable[..., Iterable[T]],
*,
kwargs_iterable: Iterable[dict],
) -> Iterable[T]:
queue = Queue()
with ThreadPool() as pool:
async_results = [
pool.apply_async(_write_generator_to_queue, (queue, func, kwargs)) for kwargs in kwargs_iterable
]
try:
while True:
try:
yield queue.get(timeout=0.05)
except Empty:
if all(async_result.ready() for async_result in async_results) and queue.empty():
break
finally:
# we get the result in case there's an error to raise
[async_result.get(timeout=0.05) for async_result in async_results]
def generate_partial_dataset(title: str, content: str, search_query: str, variant: str, csv_header: str, output: list[dict[str, str]], indices_to_generate: list[int], max_tokens=1500) -> Iterator[int]:
dataset_name, tags = title.strip("# ").split("\ntags:", 1)
dataset_name, tags = dataset_name.strip(), tags.strip()
messages = [
{
"role": "user",
"content": GENERATE_DATASET_CONTENT_FOR_SEARCH_QUERY_AND_NAME_AND_TAGS.format(
dataset_name=dataset_name,
tags=tags,
search_query=search_query,
)
},
{"role": "assistant", "content": title + "\n\n" + content},
{"role": "user", "content": GENERATE_MORE_ROWS.format(csv_header=csv_header) + " " + variant},
]
for _ in range(3):
generated_text = ""
generated_csv = ""
current_line = ""
nb_samples = 0
_in_csv = False
try:
for message in client.chat_completion(
messages=messages,
max_tokens=max_tokens,
stream=True,
top_p=0.8,
seed=42,
):
if nb_samples >= len(indices_to_generate):
break
current_line += message.choices[0].delta.content
generated_text += message.choices[0].delta.content
if current_line.endswith("\n"):
_in_csv = _in_csv ^ current_line.lstrip().startswith("```")
if current_line.strip() and _in_csv and not current_line.lstrip().startswith("```"):
generated_csv += current_line
try:
generated_df = parse_csv_df(generated_csv.strip(), csv_header=csv_header)
if len(generated_df) > nb_samples:
output[indices_to_generate[nb_samples]] = generated_df.iloc[-1].to_dict()
nb_samples += 1
yield 1
except Exception:
pass
current_line = ""
except requests.exceptions.ConnectionError as e:
print(e + "\n\nRetrying in 1sec")
time.sleep(1)
continue
break
# for debugging
# with open(f".output{indices_to_generate[0]}.txt", "w") as f:
# f.write(generated_text)
def generate_variants(preview_df: pd.DataFrame):
label_candidate_columns = [column for column in preview_df.columns if "label" in column.lower()]
if label_candidate_columns:
labels = preview_df[label_candidate_columns[0]].unique()
if len(labels) > 1:
return [
GENERATE_VARIANTS_WITH_RARITY_AND_LABEL.format(rarity=rarity, label=label)
for rarity in RARITIES
for label in labels
]
return [
GENERATE_VARIANTS_WITH_RARITY.format(rarity=rarity)
for rarity in LONG_RARITIES
]
def parse_preview_df(content: str) -> tuple[str, pd.DataFrame]:
_in_csv = False
csv = "\n".join(
line for line in content.split("\n") if line.strip()
and (_in_csv := (_in_csv ^ line.lstrip().startswith("```")))
and not line.lstrip().startswith("```")
)
if not csv:
raise gr.Error("Failed to parse CSV Preview")
return csv.split("\n")[0], parse_csv_df(csv)
def parse_csv_df(csv: str, csv_header: Optional[str] = None) -> pd.DataFrame:
# Fix generation mistake when providing a list that is not in quotes
for match in re.finditer(r'''(?!")\[(["'][\w ]+["'][, ]*)+\](?!")''', csv):
span = match.string[match.start() : match.end()]
csv = csv.replace(span, '"' + span.replace('"', "'") + '"', 1)
# Add header if missing
if csv_header and csv.strip().split("\n")[0] != csv_header:
csv = csv_header + "\n" + csv
# Read CSV
df = pd.read_csv(io.StringIO(csv), skipinitialspace=True)
return df
###################################
#
# Buttons
#
###################################
def _search_datasets(search_query):
yield {generated_texts_state: []}
yield {
button_group: gr.Group(elem_classes="buttonsGroup insivibleButtonGroup")
for button_group in button_groups[MAX_NB_ITEMS_PER_GENERATION_CALL:]
}
yield {
k: v
for dataset_name_button, tags_button in batched(buttons, 2)
for k, v in {
dataset_name_button: gr.Button("⬜⬜⬜⬜⬜⬜", elem_classes="topButton linear-background"),
tags_button: gr.Button("░░░░, ░░░░, ░░░░", elem_classes="bottomButton linear-background")
}.items()
}
current_item_idx = 0
generated_text = ""
for line in gen_datasets_line_by_line(search_query):
if "I'm sorry" in line or "against Microsoft's use case policy" in line:
raise gr.Error("Error: inappropriate content")
if current_item_idx >= MAX_NB_ITEMS_PER_GENERATION_CALL:
return
if line.strip() and line.strip().split(".", 1)[0].isnumeric():
try:
dataset_name, tags = line.strip().split(".", 1)[1].strip(" )").split(" (", 1)
except ValueError:
dataset_name, tags = line.strip().split(".", 1)[1].strip(" )").split(" ", 1)
dataset_name, tags = dataset_name.strip("()[]* "), tags.strip("()[]* ")
generated_text += line
yield {
buttons[2 * current_item_idx]: gr.Button(dataset_name, elem_classes="topButton"),
buttons[2 * current_item_idx + 1]: gr.Button(tags, elem_classes="bottomButton"),
generated_texts_state: (generated_text,),
}
current_item_idx += 1
@search_button.click(inputs=search_bar, outputs=button_groups + buttons + [generated_texts_state])
def search_dataset_from_search_button(search_query):
yield from _search_datasets(search_query)
@search_bar.submit(inputs=search_bar, outputs=button_groups + buttons + [generated_texts_state])
def search_dataset_from_search_bar(search_query):
yield from _search_datasets(search_query)
@load_more_datasets.click(inputs=[search_bar, generated_texts_state], outputs=button_groups + buttons + [generated_texts_state])
def search_more_datasets(search_query, generated_texts):
current_item_idx = initial_item_idx = len(generated_texts) * MAX_NB_ITEMS_PER_GENERATION_CALL
yield {
button_group: gr.Group(elem_classes="buttonsGroup")
for button_group in button_groups[len(generated_texts) * MAX_NB_ITEMS_PER_GENERATION_CALL:(len(generated_texts) + 1) * MAX_NB_ITEMS_PER_GENERATION_CALL]
}
generated_text = ""
for line in gen_datasets_line_by_line(search_query, generated_texts=generated_texts):
if "I'm sorry" in line or "against Microsoft's use case policy" in line:
raise gr.Error("Error: inappropriate content")
if current_item_idx - initial_item_idx >= MAX_NB_ITEMS_PER_GENERATION_CALL:
return
if line.strip() and line.strip().split(".", 1)[0].isnumeric():
try:
dataset_name, tags = line.strip().split(".", 1)[1].strip(" )").split(" (", 1)
except ValueError:
dataset_name, tags = line.strip().split(".", 1)[1].strip(" )").split(" ", 1) [0], ""
dataset_name, tags = dataset_name.strip("()[]* "), tags.strip("()[]* ")
generated_text += line
yield {
buttons[2 * current_item_idx]: gr.Button(dataset_name, elem_classes="topButton"),
buttons[2 * current_item_idx + 1]: gr.Button(tags, elem_classes="bottomButton"),
generated_texts_state: (*generated_texts, generated_text),
}
current_item_idx += 1
def _show_dataset(search_query, dataset_name, tags):
yield {
search_page: gr.Column(visible=False),
dataset_page: gr.Column(visible=True),
dataset_title: f"# {dataset_name}\n\n tags: {tags}",
dataset_share_textbox: gr.Textbox(visible=False),
dataset_dataframe: gr.DataFrame(visible=False),
generate_full_dataset_button: gr.Button(interactive=True),
save_dataset_button: gr.Button(visible=False),
open_dataset_message: gr.Markdown(visible=False)
}
for generated_text in gen_dataset_content(search_query=search_query, dataset_name=dataset_name, tags=tags):
yield {dataset_content: generated_text}
show_dataset_inputs = [search_bar, *buttons]
show_dataset_outputs = [search_page, dataset_page, dataset_title, dataset_content, generate_full_dataset_button, dataset_dataframe, save_dataset_button, open_dataset_message, dataset_share_textbox]
scroll_to_top_js = """
function (...args) {
console.log(args);
if ('parentIFrame' in window) {
window.parentIFrame.scrollTo({top: 0, behavior:'smooth'});
} else {
window.scrollTo({ top: 0 });
}
return args;
}
"""
def show_dataset_from_button(search_query, *buttons_values, i):
dataset_name, tags = buttons_values[2 * i : 2 * i + 2]
yield from _show_dataset(search_query, dataset_name, tags)
for i, (dataset_name_button, tags_button) in enumerate(batched(buttons, 2)):
dataset_name_button.click(partial(show_dataset_from_button, i=i), inputs=show_dataset_inputs, outputs=show_dataset_outputs, js=scroll_to_top_js)
tags_button.click(partial(show_dataset_from_button, i=i), inputs=show_dataset_inputs, outputs=show_dataset_outputs, js=scroll_to_top_js)
@back_button.click(outputs=[search_page, dataset_page], js=scroll_to_top_js)
def show_search_page():
return gr.Column(visible=True), gr.Column(visible=False)
@generate_full_dataset_button.click(inputs=[dataset_title, dataset_content, search_bar, select_namespace_dropdown, visibility_radio], outputs=[dataset_dataframe, generate_full_dataset_button, save_dataset_button])
def generate_full_dataset(title, content, search_query, namespace, visability):
dataset_name, tags = title.strip("# ").split("\ntags:", 1)
dataset_name, tags = dataset_name.strip(), tags.strip()
csv_header, preview_df = parse_preview_df(content)
# Remove dummy "id" columns
for column_name, values in preview_df.to_dict(orient="series").items():
try:
if [int(v) for v in values] == list(range(len(preview_df))):
preview_df = preview_df.drop(columns=column_name)
if [int(v) for v in values] == list(range(1, len(preview_df) + 1)):
preview_df = preview_df.drop(columns=column_name)
except Exception:
pass
columns = list(preview_df)
output: list[Optional[dict]] = [None] * NUM_ROWS
output[:len(preview_df)] = [{"idx": i, **x} for i, x in enumerate(preview_df.to_dict(orient="records"))]
yield {
dataset_dataframe: gr.DataFrame(pd.DataFrame([{"idx": i, **x} for i, x in enumerate(output) if x]), visible=True),
generate_full_dataset_button: gr.Button(interactive=False),
save_dataset_button: gr.Button(f"💾 Save Dataset {namespace}/{dataset_name}" + (" (private)" if visability != "public" else ""), visible=True, interactive=False)
}
kwargs_iterable = [
{
"title": title,
"content": content,
"search_query": search_query,
"variant": variant,
"csv_header": csv_header,
"output": output,
"indices_to_generate": list(range(len(preview_df) + i, NUM_ROWS, NUM_VARIANTS)),
}
for i, variant in enumerate(islice(generate_variants(preview_df), NUM_VARIANTS))
]
for _ in iflatmap_unordered(generate_partial_dataset, kwargs_iterable=kwargs_iterable):
yield {dataset_dataframe: pd.DataFrame([{"idx": i, **{column_name: x.get(column_name) for column_name in columns}} for i, x in enumerate(output) if x])}
yield {save_dataset_button: gr.Button(interactive=True)}
print(f"Generated {dataset_name}!")
@save_dataset_button.click(inputs=[dataset_title, dataset_content, search_bar, dataset_dataframe, select_namespace_dropdown, visibility_radio], outputs=[save_dataset_button, open_dataset_message])
def save_dataset(title: str, content: str, search_query: str, df: pd.DataFrame, namespace: str, visability: str, oauth_token: Optional[gr.OAuthToken]):
dataset_name, tags = title.strip("# ").split("\ntags:", 1)
dataset_name, tags = dataset_name.strip(), tags.strip()
token = oauth_token.token if oauth_token else save_dataset_hf_token
repo_id = f"{namespace}/{dataset_name}"
dataset_url = f"{URL}?q={search_query.replace(' ', '+')}&dataset={dataset_name.replace(' ', '+')}&tags={tags.replace(' ', '+')}"
gr.Info("Saving dataset...")
yield {save_dataset_button: gr.Button(interactive=False)}
create_repo(repo_id=repo_id, repo_type="dataset", private=visability!="public", exist_ok=True, token=token)
df.to_csv(f"hf://datasets/{repo_id}/data.csv", storage_options={"token": token}, index=False)
DatasetCard(DATASET_CARD_CONTENT.format(title=title, content=content, url=URL, dataset_url=dataset_url, model_id=model_id, search_query=search_query)).push_to_hub(repo_id=repo_id, repo_type="dataset", token=token)
gr.Info(f"✅ Dataset saved at {repo_id}")
additional_message = "PS: You can also save datasets under your account in the Settings ;)"
yield {open_dataset_message: gr.Markdown(f"# 🎉 Yay ! Your dataset has been saved to [{repo_id}](https://huggingface.co./datasets/{repo_id}) !\n\nDataset link: [https://huggingface.co./datasets/{repo_id}](https://huggingface.co./datasets/{repo_id})\n\n{additional_message}", visible=True)}
print(f"Saved {dataset_name}!")
@dataset_share_button.click(inputs=[dataset_title, search_bar], outputs=[dataset_share_textbox])
def show_dataset_url(title, search_query):
dataset_name, tags = title.strip("# ").split("\ntags:", 1)
dataset_name, tags = dataset_name.strip(), tags.strip()
return gr.Textbox(
f"{URL}?q={search_query.replace(' ', '+')}&dataset={dataset_name.replace(' ', '+')}&tags={tags.replace(' ', '+')}",
visible=True,
)
@demo.load(outputs=show_dataset_outputs + button_groups + buttons + [generated_texts_state] + [select_namespace_dropdown, visibility_radio])
def load_app(request: gr.Request, oauth_token: Optional[gr.OAuthToken]):
if oauth_token:
user_info = whoami(oauth_token.token)
yield {
select_namespace_dropdown: gr.Dropdown(
choices=[user_info["name"]] + [org_info["name"] for org_info in user_info["orgs"]],
value=user_info["name"],
visible=True,
),
visibility_radio: gr.Radio(interactive=True),
}
query_params = dict(request.query_params)
if "dataset" in query_params:
yield from _show_dataset(
search_query=query_params.get("q", query_params["dataset"]),
dataset_name=query_params["dataset"],
tags=query_params.get("tags", "")
)
elif "q" in query_params:
yield {search_bar: query_params["q"]}
yield from _search_datasets(query_params["q"])
else:
yield {search_page: gr.Column(visible=True)}
demo.launch() |