File size: 9,070 Bytes
e96849b
 
 
74935d1
25bbda2
74935d1
25bbda2
e96849b
2eacfd4
25bbda2
e96849b
 
 
 
 
 
 
 
 
d8ebd13
 
 
e96849b
 
 
d8ebd13
e96849b
d8ebd13
e96849b
d8ebd13
e96849b
 
 
 
 
 
d8ebd13
e96849b
 
 
 
 
 
 
 
 
 
 
 
 
 
d8ebd13
e96849b
 
 
 
 
 
 
 
 
 
25bbda2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e96849b
 
 
 
 
 
 
 
 
 
25bbda2
 
 
 
e96849b
25bbda2
 
 
 
 
d8ebd13
e96849b
 
25bbda2
 
 
e96849b
25bbda2
e96849b
 
25bbda2
 
e96849b
 
 
 
 
 
 
 
 
 
 
 
25bbda2
52165bc
 
25bbda2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52165bc
25bbda2
 
 
 
 
 
 
52165bc
 
25bbda2
 
 
d8ebd13
25bbda2
 
 
 
 
 
d8ebd13
25bbda2
 
 
 
 
 
 
 
 
 
 
d8ebd13
25bbda2
 
d8ebd13
25bbda2
 
d8ebd13
25bbda2
 
d8ebd13
25bbda2
 
 
 
 
 
 
 
 
 
 
 
 
 
d8ebd13
25bbda2
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
import os
import json
import logging
from typing import List, Dict, Optional, Any
import re
from abc import ABC, abstractmethod
from huggingface_hub import HfApi, InferenceClient
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from dataclasses import dataclass

@dataclass
class ProjectConfig:
    name: str
    description: str
    technologies: List[str]
    structure: Dict[str, List[str]]

class WebDevelopmentTool(ABC):
    def __init__(self, name: str, description: str):
        self.name = name
        self.description = description

    @abstractmethod
    def generate_code(self, *args, **kwargs):
        pass

class HTMLGenerator(WebDevelopmentTool):
    def __init__(self):
        super().__init__("HTML Generator", "Generates HTML code for web pages")

    def generate_code(self, structure: Dict[str, Any]) -> str:
        html = "<html><body>"
        for tag, content in structure.items():
            html += f"<{tag}>{content}</{tag}>"
        html += "</body></html>"
        return html

class CSSGenerator(WebDevelopmentTool):
    def __init__(self):
        super().__init__("CSS Generator", "Generates CSS code for styling web pages")

    def generate_code(self, styles: Dict[str, Dict[str, str]]) -> str:
        css = ""
        for selector, properties in styles.items():
            css += f"{selector} {{\n"
            for prop, value in properties.items():
                css += f"  {prop}: {value};\n"
            css += "}\n"
        return css

class JavaScriptGenerator(WebDevelopmentTool):
    def __init__(self):
        super().__init__("JavaScript Generator", "Generates JavaScript code for web functionality")

    def generate_code(self, functions: List[Dict[str, Any]]) -> str:
        js = ""
        for func in functions:
            js += f"function {func['name']}({', '.join(func['params'])}) {{\n"
            js += f"  {func['body']}\n"
            js += "}\n\n"
        return js

class ProjectConfig:
    def __init__(self, name: str, description: str, technologies: List[str], structure: Dict[str, List[str]]):
        self.name = name
        self.description = description
        self.technologies = technologies
        self.structure = structure

class HTMLGenerator:
    def generate(self, content: str) -> str:
        return f"<html><body>{content}</body></html>"

class CSSGenerator:
    def generate(self, styles: Dict[str, str]) -> str:
        return "\n".join([f"{selector} {{ {'; '.join([f'{prop}: {value}' for prop, value in properties.items()])} }}" for selector, properties in styles.items()])

class JavaScriptGenerator:
    def generate(self, functionality: str) -> str:
        return f"function main() {{ {functionality} }}"

class EnhancedAIAgent:
    def __init__(self, name: str, description: str, skills: List[str], model_name: str):
        self.name = name
        self.description = description
        self.skills = skills
        self.model_name = model_name
        self.html_gen_tool = HTMLGenerator()
        self.css_gen_tool = CSSGenerator()
        self.js_gen_tool = JavaScriptGenerator()
        self.hf_api = HfApi()
        self.inference_client = InferenceClient(model=model_name, token=os.environ.get("HF_API_TOKEN"))
        self.tokenizer = AutoTokenizer.from_pretrained(model_name, clean_up_tokenization_spaces=True)
        self.model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto")
        self.text_generation = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer, clean_up_tokenization_spaces=True)
        self.logger = logging.getLogger(__name__)
        self.logger.setLevel(logging.INFO)
        handler = logging.StreamHandler()
        formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
        handler.setFormatter(formatter)
        self.logger.addHandler(handler)

    def generate_agent_response(self, prompt: str) -> str:
        try:
            response = self.inference_client.text_generation(prompt, max_new_tokens=100)
            self.logger.info(f"Generated response for prompt: {prompt[:50]}...")
            return response.generated_text
        except Exception as e:
            self.logger.error(f"Error generating response: {str(e)}", exc_info=True)
            return f"Error: Unable to generate response. {str(e)}"

    def generate_project_config(self, project_description: str) -> Optional[ProjectConfig]:
        prompt = f"""
Based on the following project description, generate a ProjectConfig object:

Description: {project_description}

The ProjectConfig should include:
- name: A short, descriptive name for the project
- description: A brief summary of the project
- technologies: A list of technologies to be used (e.g., ["HTML", "CSS", "JavaScript", "React"])
- structure: A dictionary representing the file structure, where keys are directories and values are lists of files

Respond with a JSON object representing the ProjectConfig.
"""
        response = self.generate_agent_response(prompt)

        try:
            json_start = response.find('{')
            json_end = response.rfind('}') + 1
            if json_start != -1 and json_end != -1:
                json_str = response[json_start:json_end]
                config_dict = json.loads(json_str)
                return ProjectConfig(**config_dict)
            else:
                raise ValueError("No JSON object found in the response")
        except (json.JSONDecodeError, ValueError) as e:
            self.logger.error(f"Error parsing JSON from response: {str(e)}")
            self.logger.error(f"Full response from model: {response}")
            
            try:
                partial_config = self.extract_partial_config(response)
                if partial_config:
                    self.logger.warning("Extracted partial config from malformed response")
                    return partial_config
            except Exception as ex:
                self.logger.error(f"Failed to extract partial config: {str(ex)}")
            
            return None

    def extract_partial_config(self, response: str) -> Optional[ProjectConfig]:
        name = self.extract_field(response, "name")
        description = self.extract_field(response, "description")
        technologies = self.extract_list(response, "technologies")
        structure = self.extract_dict(response, "structure")
        
        if name and description:
            return ProjectConfig(
                name=name,
                description=description,
                technologies=technologies or [],
                structure=structure or {}
            )
        return None

    def extract_field(self, text: str, field: str) -> Optional[str]:
        match = re.search(rf'"{field}"\s*:\s*"([^"]*)"', text)
        return match.group(1) if match else None

    def extract_list(self, text: str, field: str) -> Optional[List[str]]:
        match = re.search(rf'"{field}"\s*:\s*\[(.*?)\]', text, re.DOTALL)
        if match:
            items = re.findall(r'"([^"]*)"', match.group(1))
            return items
        return None

    def extract_dict(self, text: str, field: str) -> Optional[Dict[str, List[str]]]:
        match = re.search(rf'"{field}"\s*:\s*\{{(.*?)\}}', text, re.DOTALL)
        if match:
            dict_str = match.group(1)
            result = {}
            for item in re.finditer(r'"([^"]*)"\s*:\s*\[(.*?)\]', dict_str, re.DOTALL):
                key = item.group(1)
                values = re.findall(r'"([^"]*)"', item.group(2))
                result[key] = values
            return result
        return None

    def generate_html(self, content: str) -> str:
        return self.html_gen_tool.generate(content)

    def generate_css(self, styles: Dict[str, str]) -> str:
        return self.css_gen_tool.generate(styles)

    def generate_javascript(self, functionality: str) -> str:
        return self.js_gen_tool.generate(functionality)

    def create_project_files(self, config: ProjectConfig) -> Dict[str, str]:
        files = {}
        for directory, file_list in config.structure.items():
            for file in file_list:
                file_path = os.path.join(directory, file)
                if file.endswith('.html'):
                    files[file_path] = self.generate_html(f"Content for {file}")
                elif file.endswith('.css'):
                    files[file_path] = self.generate_css({"body": {"font-family": "Arial, sans-serif"}})
                elif file.endswith('.js'):
                    files[file_path] = self.generate_javascript(f"console.log('Script for {file}');")
                else:
                    files[file_path] = f"Content for {file}"
        return files

    def execute_project(self, project_description: str) -> Dict[str, str]:
        config = self.generate_project_config(project_description)
        if config:
            return self.create_project_files(config)
        else:
            self.logger.error("Failed to generate project configuration")
            return {}