Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,34 @@
|
|
1 |
-
import streamlit as st
|
2 |
import os
|
3 |
import subprocess
|
|
|
4 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
5 |
import black
|
6 |
from pylint import lint
|
7 |
from io import StringIO
|
|
|
8 |
import sys
|
9 |
|
|
|
|
|
|
|
|
|
10 |
PROJECT_ROOT = "projects"
|
11 |
AGENT_DIRECTORY = "agents"
|
12 |
|
13 |
-
|
|
|
14 |
st.session_state.chat_history = []
|
15 |
-
if
|
16 |
st.session_state.terminal_history = []
|
17 |
-
if
|
18 |
st.session_state.workspace_projects = {}
|
19 |
-
if
|
20 |
st.session_state.available_agents = []
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
class AIAgent:
|
23 |
def __init__(self, name, description, skills):
|
@@ -28,20 +39,31 @@ class AIAgent:
|
|
28 |
def create_agent_prompt(self):
|
29 |
skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
|
30 |
agent_prompt = f"""
|
31 |
-
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
|
|
|
32 |
|
33 |
-
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
|
|
|
34 |
return agent_prompt
|
35 |
|
36 |
def autonomous_build(self, chat_history, workspace_projects):
|
37 |
"""
|
38 |
Autonomous build logic that continues based on the state of chat history and workspace projects.
|
39 |
"""
|
40 |
-
# Example logic: Generate a summary of chat history and workspace state
|
41 |
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
|
42 |
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
|
43 |
|
44 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
next_step = "Based on the current state, the next logical step is to implement the main application logic."
|
46 |
|
47 |
return summary, next_step
|
@@ -76,7 +98,7 @@ def chat_interface_with_agent(input_text, agent_name):
|
|
76 |
if agent_prompt is None:
|
77 |
return f"Agent {agent_name} not found."
|
78 |
|
79 |
-
model_name = "
|
80 |
try:
|
81 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
82 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -84,101 +106,249 @@ def chat_interface_with_agent(input_text, agent_name):
|
|
84 |
except EnvironmentError as e:
|
85 |
return f"Error loading model: {e}"
|
86 |
|
87 |
-
# Combine the agent prompt with user input
|
88 |
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
|
89 |
-
|
90 |
-
# Truncate input text to avoid exceeding the model's maximum length
|
91 |
-
max_input_length = 900
|
92 |
input_ids = tokenizer.encode(combined_input, return_tensors="pt")
|
|
|
93 |
if input_ids.shape[1] > max_input_length:
|
94 |
input_ids = input_ids[:, :max_input_length]
|
95 |
|
96 |
-
# Generate chatbot response
|
97 |
outputs = model.generate(
|
98 |
-
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True
|
|
|
99 |
)
|
100 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
101 |
return response
|
102 |
|
|
|
103 |
def terminal_interface(command, project_name=None):
|
104 |
if project_name:
|
105 |
project_path = os.path.join(PROJECT_ROOT, project_name)
|
|
|
|
|
106 |
result = subprocess.run(command, shell=True, capture_output=True, text=True, cwd=project_path)
|
107 |
else:
|
108 |
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
109 |
return result.stdout
|
110 |
|
|
|
111 |
def code_editor_interface(code):
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
|
|
|
|
|
|
|
|
|
|
118 |
def summarize_text(text):
|
119 |
summarizer = pipeline("summarization")
|
120 |
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
|
121 |
return summary[0]['summary_text']
|
122 |
|
|
|
123 |
def sentiment_analysis(text):
|
124 |
analyzer = pipeline("sentiment-analysis")
|
125 |
result = analyzer(text)
|
126 |
return result[0]['label']
|
127 |
|
|
|
128 |
def translate_code(code, source_language, target_language):
|
129 |
-
#
|
130 |
-
|
|
|
|
|
131 |
|
132 |
-
def generate_code(
|
133 |
-
#
|
134 |
-
|
|
|
|
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
def workspace_interface(project_name):
|
137 |
project_path = os.path.join(PROJECT_ROOT, project_name)
|
138 |
if not os.path.exists(project_path):
|
139 |
os.makedirs(project_path)
|
140 |
st.session_state.workspace_projects[project_name] = {'files': []}
|
141 |
-
|
|
|
|
|
142 |
|
|
|
143 |
def add_code_to_workspace(project_name, code, file_name):
|
144 |
project_path = os.path.join(PROJECT_ROOT, project_name)
|
145 |
if not os.path.exists(project_path):
|
146 |
return f"Project '{project_name}' does not exist."
|
147 |
-
|
148 |
file_path = os.path.join(project_path, file_name)
|
149 |
with open(file_path, "w") as file:
|
150 |
file.write(code)
|
151 |
st.session_state.workspace_projects[project_name]['files'].append(file_name)
|
152 |
return f"Code added to '{file_name}' in project '{project_name}'."
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
if agent_prompt is None:
|
157 |
-
return f"Agent {agent_name} not found."
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
163 |
-
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
164 |
-
except EnvironmentError as e:
|
165 |
-
return f"Error loading model: {e}"
|
166 |
|
167 |
-
|
168 |
-
|
|
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
if
|
174 |
-
|
|
|
|
|
175 |
|
176 |
-
|
177 |
-
|
|
|
178 |
|
179 |
-
#
|
180 |
-
|
181 |
-
|
182 |
-
)
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import subprocess
|
3 |
+
import streamlit as st
|
4 |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
5 |
import black
|
6 |
from pylint import lint
|
7 |
from io import StringIO
|
8 |
+
import openai
|
9 |
import sys
|
10 |
|
11 |
+
# Set your OpenAI API key here
|
12 |
+
openai.api_key = "YOUR_OPENAI_API_KEY"
|
13 |
+
|
14 |
+
HUGGING_FACE_REPO_URL = "https://huggingface.co/spaces/acecalisto3/DevToolKit"
|
15 |
PROJECT_ROOT = "projects"
|
16 |
AGENT_DIRECTORY = "agents"
|
17 |
|
18 |
+
# Global state to manage communication between Tool Box and Workspace Chat App
|
19 |
+
if 'chat_history' not in st.session_state:
|
20 |
st.session_state.chat_history = []
|
21 |
+
if 'terminal_history' not in st.session_state:
|
22 |
st.session_state.terminal_history = []
|
23 |
+
if 'workspace_projects' not in st.session_state:
|
24 |
st.session_state.workspace_projects = {}
|
25 |
+
if 'available_agents' not in st.session_state:
|
26 |
st.session_state.available_agents = []
|
27 |
+
if 'current_state' not in st.session_state:
|
28 |
+
st.session_state.current_state = {
|
29 |
+
'toolbox': {},
|
30 |
+
'workspace_chat': {}
|
31 |
+
}
|
32 |
|
33 |
class AIAgent:
|
34 |
def __init__(self, name, description, skills):
|
|
|
39 |
def create_agent_prompt(self):
|
40 |
skills_str = '\n'.join([f"* {skill}" for skill in self.skills])
|
41 |
agent_prompt = f"""
|
42 |
+
As an elite expert developer, my name is {self.name}. I possess a comprehensive understanding of the following areas:
|
43 |
+
{skills_str}
|
44 |
|
45 |
+
I am confident that I can leverage my expertise to assist you in developing and deploying cutting-edge web applications. Please feel free to ask any questions or present any challenges you may encounter.
|
46 |
+
"""
|
47 |
return agent_prompt
|
48 |
|
49 |
def autonomous_build(self, chat_history, workspace_projects):
|
50 |
"""
|
51 |
Autonomous build logic that continues based on the state of chat history and workspace projects.
|
52 |
"""
|
|
|
53 |
summary = "Chat History:\n" + "\n".join([f"User: {u}\nAgent: {a}" for u, a in chat_history])
|
54 |
summary += "\n\nWorkspace Projects:\n" + "\n".join([f"{p}: {details}" for p, details in workspace_projects.items()])
|
55 |
|
56 |
+
# Analyze chat history and workspace projects to suggest actions
|
57 |
+
# Example:
|
58 |
+
# - Check if the user has requested to create a new file
|
59 |
+
# - Check if the user has requested to install a package
|
60 |
+
# - Check if the user has requested to run a command
|
61 |
+
# - Check if the user has requested to generate code
|
62 |
+
# - Check if the user has requested to translate code
|
63 |
+
# - Check if the user has requested to summarize text
|
64 |
+
# - Check if the user has requested to analyze sentiment
|
65 |
+
|
66 |
+
# Generate a response based on the analysis
|
67 |
next_step = "Based on the current state, the next logical step is to implement the main application logic."
|
68 |
|
69 |
return summary, next_step
|
|
|
98 |
if agent_prompt is None:
|
99 |
return f"Agent {agent_name} not found."
|
100 |
|
101 |
+
model_name = "Bin12345/AutoCoder_S_6.7B"
|
102 |
try:
|
103 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
104 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
106 |
except EnvironmentError as e:
|
107 |
return f"Error loading model: {e}"
|
108 |
|
|
|
109 |
combined_input = f"{agent_prompt}\n\nUser: {input_text}\nAgent:"
|
110 |
+
|
|
|
|
|
111 |
input_ids = tokenizer.encode(combined_input, return_tensors="pt")
|
112 |
+
max_input_length = 900
|
113 |
if input_ids.shape[1] > max_input_length:
|
114 |
input_ids = input_ids[:, :max_input_length]
|
115 |
|
|
|
116 |
outputs = model.generate(
|
117 |
+
input_ids, max_new_tokens=50, num_return_sequences=1, do_sample=True,
|
118 |
+
pad_token_id=tokenizer.eos_token_id # Set pad_token_id to eos_token_id
|
119 |
)
|
120 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
121 |
return response
|
122 |
|
123 |
+
# Terminal interface
|
124 |
def terminal_interface(command, project_name=None):
|
125 |
if project_name:
|
126 |
project_path = os.path.join(PROJECT_ROOT, project_name)
|
127 |
+
if not os.path.exists(project_path):
|
128 |
+
return f"Project {project_name} does not exist."
|
129 |
result = subprocess.run(command, shell=True, capture_output=True, text=True, cwd=project_path)
|
130 |
else:
|
131 |
result = subprocess.run(command, shell=True, capture_output=True, text=True)
|
132 |
return result.stdout
|
133 |
|
134 |
+
# Code editor interface
|
135 |
def code_editor_interface(code):
|
136 |
+
try:
|
137 |
+
formatted_code = black.format_str(code, mode=black.FileMode())
|
138 |
+
except black.NothingChanged:
|
139 |
+
formatted_code = code
|
140 |
+
|
141 |
+
result = StringIO()
|
142 |
+
sys.stdout = result
|
143 |
+
sys.stderr = result
|
144 |
+
|
145 |
+
(pylint_stdout, pylint_stderr) = lint.py_run(code, return_std=True)
|
146 |
+
sys.stdout = sys.__stdout__
|
147 |
+
sys.stderr = sys.__stderr__
|
148 |
|
149 |
+
lint_message = pylint_stdout.getvalue() + pylint_stderr.getvalue()
|
150 |
+
|
151 |
+
return formatted_code, lint_message
|
152 |
+
|
153 |
+
# Text summarization tool
|
154 |
def summarize_text(text):
|
155 |
summarizer = pipeline("summarization")
|
156 |
summary = summarizer(text, max_length=130, min_length=30, do_sample=False)
|
157 |
return summary[0]['summary_text']
|
158 |
|
159 |
+
# Sentiment analysis tool
|
160 |
def sentiment_analysis(text):
|
161 |
analyzer = pipeline("sentiment-analysis")
|
162 |
result = analyzer(text)
|
163 |
return result[0]['label']
|
164 |
|
165 |
+
# Text translation tool (code translation)
|
166 |
def translate_code(code, source_language, target_language):
|
167 |
+
# Use a Hugging Face translation model instead of OpenAI
|
168 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es") # Example: English to Spanish
|
169 |
+
translated_code = translator(code, target_lang=target_language)[0]['translation_text']
|
170 |
+
return translated_code
|
171 |
|
172 |
+
def generate_code(code_idea):
|
173 |
+
# Use a Hugging Face code generation model instead of OpenAI
|
174 |
+
generator = pipeline('text-generation', model='bigcode/starcoder')
|
175 |
+
generated_code = generator(code_idea, max_length=1000, num_return_sequences=1)[0]['generated_text']
|
176 |
+
return generated_code
|
177 |
|
178 |
+
def chat_interface(input_text):
|
179 |
+
"""Handles general chat interactions with the user."""
|
180 |
+
# Use a Hugging Face chatbot model or your own logic
|
181 |
+
chatbot = pipeline("text-generation", model="microsoft/DialoGPT-medium")
|
182 |
+
response = chatbot(input_text, max_length=50, num_return_sequences=1)[0]['generated_text']
|
183 |
+
return response
|
184 |
+
|
185 |
+
# Workspace interface
|
186 |
def workspace_interface(project_name):
|
187 |
project_path = os.path.join(PROJECT_ROOT, project_name)
|
188 |
if not os.path.exists(project_path):
|
189 |
os.makedirs(project_path)
|
190 |
st.session_state.workspace_projects[project_name] = {'files': []}
|
191 |
+
return f"Project '{project_name}' created successfully."
|
192 |
+
else:
|
193 |
+
return f"Project '{project_name}' already exists."
|
194 |
|
195 |
+
# Add code to workspace
|
196 |
def add_code_to_workspace(project_name, code, file_name):
|
197 |
project_path = os.path.join(PROJECT_ROOT, project_name)
|
198 |
if not os.path.exists(project_path):
|
199 |
return f"Project '{project_name}' does not exist."
|
200 |
+
|
201 |
file_path = os.path.join(project_path, file_name)
|
202 |
with open(file_path, "w") as file:
|
203 |
file.write(code)
|
204 |
st.session_state.workspace_projects[project_name]['files'].append(file_name)
|
205 |
return f"Code added to '{file_name}' in project '{project_name}'."
|
206 |
|
207 |
+
# Streamlit App
|
208 |
+
st.title("AI Agent Creator")
|
|
|
|
|
209 |
|
210 |
+
# Sidebar navigation
|
211 |
+
st.sidebar.title("Navigation")
|
212 |
+
app_mode = st.sidebar.selectbox("Choose the app mode", ["AI Agent Creator", "Tool Box", "Workspace Chat App"])
|
|
|
|
|
|
|
|
|
213 |
|
214 |
+
if app_mode == "AI Agent Creator":
|
215 |
+
# AI Agent Creator
|
216 |
+
st.header("Create an AI Agent from Text")
|
217 |
|
218 |
+
st.subheader("From Text")
|
219 |
+
agent_name = st.text_input("Enter agent name:")
|
220 |
+
text_input = st.text_area("Enter skills (one per line):")
|
221 |
+
if st.button("Create Agent"):
|
222 |
+
agent_prompt = create_agent_from_text(agent_name, text_input)
|
223 |
+
st.success(f"Agent '{agent_name}' created and saved successfully.")
|
224 |
+
st.session_state.available_agents.append(agent_name)
|
225 |
|
226 |
+
elif app_mode == "Tool Box":
|
227 |
+
# Tool Box
|
228 |
+
st.header("AI-Powered Tools")
|
229 |
|
230 |
+
# Chat Interface
|
231 |
+
st.subheader("Chat with CodeCraft")
|
232 |
+
chat_input = st.text_area("Enter your message:")
|
233 |
+
if st.button("Send"):
|
234 |
+
chat_response = chat_interface(chat_input)
|
235 |
+
st.session_state.chat_history.append((chat_input, chat_response))
|
236 |
+
st.write(f"CodeCraft: {chat_response}")
|
237 |
+
|
238 |
+
# Terminal Interface
|
239 |
+
st.subheader("Terminal")
|
240 |
+
terminal_input = st.text_input("Enter a command:")
|
241 |
+
if st.button("Run"):
|
242 |
+
terminal_output = terminal_interface(terminal_input)
|
243 |
+
st.session_state.terminal_history.append((terminal_input, terminal_output))
|
244 |
+
st.code(terminal_output, language="bash")
|
245 |
+
|
246 |
+
# Code Editor Interface
|
247 |
+
st.subheader("Code Editor")
|
248 |
+
code_editor = st.text_area("Write your code:", height=300)
|
249 |
+
if st.button("Format & Lint"):
|
250 |
+
formatted_code, lint_message = code_editor_interface(code_editor)
|
251 |
+
st.code(formatted_code, language="python")
|
252 |
+
st.info(lint_message)
|
253 |
+
|
254 |
+
# Text Summarization Tool
|
255 |
+
st.subheader("Summarize Text")
|
256 |
+
text_to_summarize = st.text_area("Enter text to summarize:")
|
257 |
+
if st.button("Summarize"):
|
258 |
+
summary = summarize_text(text_to_summarize)
|
259 |
+
st.write(f"Summary: {summary}")
|
260 |
+
|
261 |
+
# Sentiment Analysis Tool
|
262 |
+
st.subheader("Sentiment Analysis")
|
263 |
+
sentiment_text = st.text_area("Enter text for sentiment analysis:")
|
264 |
+
if st.button("Analyze Sentiment"):
|
265 |
+
sentiment = sentiment_analysis(sentiment_text)
|
266 |
+
st.write(f"Sentiment: {sentiment}")
|
267 |
+
|
268 |
+
# Text Translation Tool (Code Translation)
|
269 |
+
st.subheader("Translate Code")
|
270 |
+
code_to_translate = st.text_area("Enter code to translate:")
|
271 |
+
source_language = st.text_input("Enter source language (e.g., 'Python'):")
|
272 |
+
target_language = st.text_input("Enter target language (e.g., 'JavaScript'):")
|
273 |
+
if st.button("Translate Code"):
|
274 |
+
translated_code = translate_code(code_to_translate, source_language, target_language)
|
275 |
+
st.code(translated_code, language=target_language.lower())
|
276 |
+
|
277 |
+
# Code Generation
|
278 |
+
st.subheader("Code Generation")
|
279 |
+
code_idea = st.text_input("Enter your code idea:")
|
280 |
+
if st.button("Generate Code"):
|
281 |
+
generated_code = generate_code(code_idea)
|
282 |
+
st.code(generated_code, language="python")
|
283 |
+
|
284 |
+
elif app_mode == "Workspace Chat App":
|
285 |
+
# Workspace Chat App
|
286 |
+
st.header("Workspace Chat App")
|
287 |
+
|
288 |
+
# Project Workspace Creation
|
289 |
+
st.subheader("Create a New Project")
|
290 |
+
project_name = st.text_input("Enter project name:")
|
291 |
+
if st.button("Create Project"):
|
292 |
+
workspace_status = workspace_interface(project_name)
|
293 |
+
st.success(workspace_status)
|
294 |
+
|
295 |
+
# Add Code to Workspace
|
296 |
+
st.subheader("Add Code to Workspace")
|
297 |
+
code_to_add = st.text_area("Enter code to add to workspace:")
|
298 |
+
file_name = st.text_input("Enter file name (e.g., 'app.py'):")
|
299 |
+
if st.button("Add Code"):
|
300 |
+
add_code_status = add_code_to_workspace(project_name, code_to_add, file_name)
|
301 |
+
st.success(add_code_status)
|
302 |
+
|
303 |
+
# Terminal Interface with Project Context
|
304 |
+
st.subheader("Terminal (Workspace Context)")
|
305 |
+
terminal_input = st.text_input("Enter a command within the workspace:")
|
306 |
+
if st.button("Run Command"):
|
307 |
+
terminal_output = terminal_interface(terminal_input, project_name)
|
308 |
+
st.code(terminal_output, language="bash")
|
309 |
+
|
310 |
+
# Chat Interface for Guidance
|
311 |
+
st.subheader("Chat with CodeCraft for Guidance")
|
312 |
+
chat_input = st.text_area("Enter your message for guidance:")
|
313 |
+
if st.button("Get Guidance"):
|
314 |
+
chat_response = chat_interface(chat_input)
|
315 |
+
st.session_state.chat_history.append((chat_input, chat_response))
|
316 |
+
st.write(f"CodeCraft: {chat_response}")
|
317 |
+
|
318 |
+
# Display Chat History
|
319 |
+
st.subheader("Chat History")
|
320 |
+
for user_input, response in st.session_state.chat_history:
|
321 |
+
st.write(f"User: {user_input}")
|
322 |
+
st.write(f"CodeCraft: {response}")
|
323 |
+
|
324 |
+
# Display Terminal History
|
325 |
+
st.subheader("Terminal History")
|
326 |
+
for command, output in st.session_state.terminal_history:
|
327 |
+
st.write(f"Command: {command}")
|
328 |
+
st.code(output, language="bash")
|
329 |
+
|
330 |
+
# Display Projects and Files
|
331 |
+
st.subheader("Workspace Projects")
|
332 |
+
for project, details in st.session_state.workspace_projects.items():
|
333 |
+
st.write(f"Project: {project}")
|
334 |
+
for file in details['files']:
|
335 |
+
st.write(f" - {file}")
|
336 |
+
|
337 |
+
# Chat with AI Agents
|
338 |
+
st.subheader("Chat with AI Agents")
|
339 |
+
selected_agent = st.selectbox("Select an AI agent", st.session_state.available_agents)
|
340 |
+
agent_chat_input = st.text_area("Enter your message for the agent:")
|
341 |
+
if st.button("Send to Agent"):
|
342 |
+
agent_chat_response = chat_interface_with_agent(agent_chat_input, selected_agent)
|
343 |
+
st.session_state.chat_history.append((agent_chat_input, agent_chat_response))
|
344 |
+
st.write(f"{selected_agent}: {agent_chat_response}")
|
345 |
+
|
346 |
+
# Automate Build Process
|
347 |
+
st.subheader("Automate Build Process")
|
348 |
+
if st.button("Automate"):
|
349 |
+
agent = AIAgent(selected_agent, "", []) # Load the agent without skills for now
|
350 |
+
summary, next_step = agent.autonomous_build(st.session_state.chat_history, st.session_state.workspace_projects)
|
351 |
+
st.write("Autonomous Build Summary:")
|
352 |
+
st.write(summary)
|
353 |
+
st.write("Next Step:")
|
354 |
+
st.write(next_step)
|