import json import logging import os from functools import lru_cache from typing import List from urllib.parse import unquote import more_itertools import pandas as pd import requests import streamlit as st import wikipedia from codetiming import Timer from fuzzysearch import find_near_matches from googleapi import google from tqdm.auto import tqdm from transformers import ( AutoTokenizer, GPT2LMHeadModel, GPT2Tokenizer, pipeline, set_seed, ) from .modeling_gpt2 import GPT2LMHeadModel as GROVERLMHeadModel from .preprocess import ArabertPreprocessor from .sa_utils import * from .utils import download_models, softmax logger = logging.getLogger(__name__) # Taken and Modified from https://huggingface.co./spaces/flax-community/chef-transformer/blob/main/app.py class TextGeneration: def __init__(self): self.debug = False self.generation_pipline = {} self.preprocessor = ArabertPreprocessor(model_name="aragpt2-mega") self.tokenizer = GPT2Tokenizer.from_pretrained( "aubmindlab/aragpt2-mega", use_fast=False ) self.tokenizer.pad_token = self.tokenizer.eos_token self.API_KEY = os.getenv("API_KEY") self.headers = {"Authorization": f"Bearer {self.API_KEY}"} # self.model_names_or_paths = { # "aragpt2-medium": "D:/ML/Models/aragpt2-medium", # "aragpt2-base": "D:/ML/Models/aragpt2-base", # } self.model_names_or_paths = { # "aragpt2-medium": "aubmindlab/aragpt2-medium", "aragpt2-base": "aubmindlab/aragpt2-base", # "aragpt2-large": "aubmindlab/aragpt2-large", "aragpt2-mega": "aubmindlab/aragpt2-mega", } set_seed(42) def load_pipeline(self): for model_name, model_path in self.model_names_or_paths.items(): if "base" in model_name or "medium" in model_name: self.generation_pipline[model_name] = pipeline( "text-generation", model=GPT2LMHeadModel.from_pretrained(model_path), tokenizer=self.tokenizer, device=-1, ) else: self.generation_pipline[model_name] = pipeline( "text-generation", model=GROVERLMHeadModel.from_pretrained(model_path), tokenizer=self.tokenizer, device=-1, ) def load(self): if not self.debug: self.load_pipeline() def generate( self, model_name, prompt, max_new_tokens: int, temperature: float, top_k: int, top_p: float, repetition_penalty: float, no_repeat_ngram_size: int, do_sample: bool, num_beams: int, ): logger.info(f"Generating with {model_name}") prompt = self.preprocessor.preprocess(prompt) return_full_text = False return_text = True num_return_sequences = 1 pad_token_id = 0 eos_token_id = 0 input_tok = self.tokenizer.tokenize(prompt) max_length = len(input_tok) + max_new_tokens if max_length > 1024: max_length = 1024 if not self.debug: generated_text = self.generation_pipline[model_name.lower()]( prompt, max_length=max_length, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, no_repeat_ngram_size=no_repeat_ngram_size, pad_token_id=pad_token_id, eos_token_id=eos_token_id, return_full_text=return_full_text, return_text=return_text, do_sample=do_sample, num_beams=num_beams, num_return_sequences=num_return_sequences, )[0]["generated_text"] else: generated_text = self.generate_by_query( prompt, model_name, max_length=max_length, temperature=temperature, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, no_repeat_ngram_size=no_repeat_ngram_size, pad_token_id=pad_token_id, eos_token_id=eos_token_id, return_full_text=return_full_text, return_text=return_text, do_sample=do_sample, num_beams=num_beams, num_return_sequences=num_return_sequences, ) # print(generated_text) if isinstance(generated_text, dict): if "error" in generated_text: if "is currently loading" in generated_text["error"]: return f"Model is currently loading, estimated time is {generated_text['estimated_time']}" return generated_text["error"] else: return "Something happened 🤷‍♂️!!" else: generated_text = generated_text[0]["generated_text"] logger.info(f"Prompt: {prompt}") logger.info(f"Generated text: {generated_text}") return self.preprocessor.unpreprocess(generated_text) def query(self, payload, model_name): data = json.dumps(payload) url = ( "https://api-inference.huggingface.co/models/aubmindlab/" + model_name.lower() ) response = requests.request("POST", url, headers=self.headers, data=data) return json.loads(response.content.decode("utf-8")) def generate_by_query( self, prompt: str, model_name: str, max_length: int, temperature: float, top_k: int, top_p: float, repetition_penalty: float, no_repeat_ngram_size: int, pad_token_id: int, eos_token_id: int, return_full_text: int, return_text: int, do_sample: bool, num_beams: int, num_return_sequences: int, ): payload = { "inputs": prompt, "parameters": { "max_length ": max_length, "top_k": top_k, "top_p": top_p, "temperature": temperature, "repetition_penalty": repetition_penalty, "no_repeat_ngram_size": no_repeat_ngram_size, "pad_token_id": pad_token_id, "eos_token_id": eos_token_id, "return_full_text": return_full_text, "return_text": return_text, "pad_token_id": pad_token_id, "do_sample": do_sample, "num_beams": num_beams, "num_return_sequences": num_return_sequences, }, "options": { "use_cache": True, }, } return self.query(payload, model_name) class SentimentAnalyzer: def __init__(self): self.sa_models = [ "sa_trial5_1", # "sa_no_aoa_in_neutral", # "sa_cnnbert", # "sa_sarcasm", # "sar_trial10", # "sa_no_AOA", ] download_models(self.sa_models) # fmt: off self.processors = { "sa_trial5_1": Trial5ArabicPreprocessor(model_name='UBC-NLP/MARBERT'), # "sa_no_aoa_in_neutral": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'), # "sa_cnnbert": CNNMarbertArabicPreprocessor(model_name='UBC-NLP/MARBERT'), # "sa_sarcasm": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'), # "sar_trial10": SarcasmArabicPreprocessor(model_name='UBC-NLP/MARBERT'), # "sa_no_AOA": NewArabicPreprocessorBalanced(model_name='UBC-NLP/MARBERT'), } self.pipelines = { "sa_trial5_1": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_trial5_1",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_trial5_1")], # "sa_no_aoa_in_neutral": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_no_aoa_in_neutral",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_no_aoa_in_neutral")], # "sa_cnnbert": [CNNTextClassificationPipeline("{}/train_{}/best_model".format("sa_cnnbert",i), device=-1, return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_cnnbert")], # "sa_sarcasm": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_sarcasm",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_sarcasm")], # "sar_trial10": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sar_trial10",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sar_trial10")], # "sa_no_AOA": [pipeline("sentiment-analysis", model="{}/train_{}/best_model".format("sa_no_AOA",i), device=-1,return_all_scores =True) for i in tqdm(range(0,5), desc=f"Loading pipeline for model: sa_no_AOA")], } # fmt: on def get_preds_from_sarcasm(self, texts): prep = self.processors["sar_trial10"] prep_texts = [prep.preprocess(x) for x in texts] preds_df = pd.DataFrame([]) for i in range(0, 5): preds = [] for s in more_itertools.chunked(list(prep_texts), 128): preds.extend(self.pipelines["sar_trial10"][i](s)) preds_df[f"model_{i}"] = preds final_labels = [] final_scores = [] for id, row in preds_df.iterrows(): pos_total = 0 neu_total = 0 for pred in row[:]: pos_total += pred[0]["score"] neu_total += pred[1]["score"] pos_avg = pos_total / len(row[:]) neu_avg = neu_total / len(row[:]) final_labels.append( self.pipelines["sar_trial10"][0].model.config.id2label[ np.argmax([pos_avg, neu_avg]) ] ) final_scores.append(np.max([pos_avg, neu_avg])) return final_labels, final_scores def get_preds_from_a_model(self, texts: List[str], model_name): try: prep = self.processors[model_name] prep_texts = [prep.preprocess(x) for x in texts] if model_name == "sa_sarcasm": sarcasm_label, _ = self.get_preds_from_sarcasm(texts) sarcastic_map = {"Not_Sarcastic": "غير ساخر", "Sarcastic": "ساخر"} labeled_prep_texts = [] for t, l in zip(prep_texts, sarcasm_label): labeled_prep_texts.append(sarcastic_map[l] + " [SEP] " + t) preds_df = pd.DataFrame([]) for i in range(0, 5): preds = [] for s in more_itertools.chunked(list(prep_texts), 128): preds.extend(self.pipelines[model_name][i](s)) preds_df[f"model_{i}"] = preds final_labels = [] final_scores = [] final_scores_list = [] for id, row in preds_df.iterrows(): pos_total = 0 neg_total = 0 neu_total = 0 for pred in row[2:]: pos_total += pred[0]["score"] neu_total += pred[1]["score"] neg_total += pred[2]["score"] pos_avg = pos_total / 5 neu_avg = neu_total / 5 neg_avg = neg_total / 5 if model_name == "sa_no_aoa_in_neutral": final_labels.append( self.pipelines[model_name][0].model.config.id2label[ np.argmax([neu_avg, neg_avg, pos_avg]) ] ) else: final_labels.append( self.pipelines[model_name][0].model.config.id2label[ np.argmax([pos_avg, neu_avg, neg_avg]) ] ) final_scores.append(np.max([pos_avg, neu_avg, neg_avg])) final_scores_list.append((pos_avg, neu_avg, neg_avg)) except RuntimeError as e: if model_name == "sa_cnnbert": return ( ["Neutral"] * len(texts), [0.0] * len(texts), [(0.0, 0.0, 0.0)] * len(texts), ) else: raise RuntimeError(e) return final_labels, final_scores, final_scores_list def predict(self, texts: List[str]): logger.info(f"Predicting for: {texts}") # ( # new_balanced_label, # new_balanced_score, # new_balanced_score_list, # ) = self.get_preds_from_a_model(texts, "sa_no_aoa_in_neutral") # ( # cnn_marbert_label, # cnn_marbert_score, # cnn_marbert_score_list, # ) = self.get_preds_from_a_model(texts, "sa_cnnbert") trial5_label, trial5_score, trial5_score_list = self.get_preds_from_a_model( texts, "sa_trial5_1" ) # no_aoa_label, no_aoa_score, no_aoa_score_list = self.get_preds_from_a_model( # texts, "sa_no_AOA" # ) # sarcasm_label, sarcasm_score, sarcasm_score_list = self.get_preds_from_a_model( # texts, "sa_sarcasm" # ) id_label_map = {0: "Positive", 1: "Neutral", 2: "Negative"} final_ensemble_prediction = [] final_ensemble_score = [] final_ensemble_all_score = [] for entry in zip( # new_balanced_score_list, # cnn_marbert_score_list, trial5_score_list, # no_aoa_score_list, # sarcasm_score_list, ): pos_score = 0 neu_score = 0 neg_score = 0 for s in entry: pos_score += s[0] * 1.57 neu_score += s[1] * 0.98 neg_score += s[2] * 0.93 # weighted 2 # pos_score += s[0]*1.67 # neu_score += s[1] # neg_score += s[2]*0.95 final_ensemble_prediction.append( id_label_map[np.argmax([pos_score, neu_score, neg_score])] ) final_ensemble_score.append(np.max([pos_score, neu_score, neg_score])) final_ensemble_all_score.append( softmax(np.array([pos_score, neu_score, neg_score])).tolist() ) logger.info(f"Result: {final_ensemble_prediction}") logger.info(f"Score: {final_ensemble_score}") logger.info(f"All Scores: {final_ensemble_all_score}") return final_ensemble_prediction, final_ensemble_score, final_ensemble_all_score wikipedia.set_lang("ar") os.environ["TOKENIZERS_PARALLELISM"] = "false" preprocessor = ArabertPreprocessor("wissamantoun/araelectra-base-artydiqa") logger.info("Loading QA Pipeline...") tokenizer = AutoTokenizer.from_pretrained("wissamantoun/araelectra-base-artydiqa") qa_pipe = pipeline("question-answering", model="wissamantoun/araelectra-base-artydiqa") logger.info("Finished loading QA Pipeline...") @lru_cache(maxsize=100) def get_qa_answers(question): logger.info("\n=================================================================") logger.info(f"Question: {question}") if "وسام أنطون" in question or "wissam antoun" in question.lower(): return { "title": "Creator", "results": [ { "score": 1.0, "new_start": 0, "new_end": 12, "new_answer": "My Creator 😜", "original": "My Creator 😜", "link": "https://github.com/WissamAntoun/", } ], } search_timer = Timer( "search and wiki", text="Search and Wikipedia Time: {:.2f}", logger=logging.info ) try: search_timer.start() search_results = google.search( question + " site:ar.wikipedia.org", lang="ar", area="ar" ) if len(search_results) == 0: return {} page_name = search_results[0].link.split("wiki/")[-1] wiki_page = wikipedia.page(unquote(page_name)) wiki_page_content = wiki_page.content search_timer.stop() except: return {} sections = [] for section in re.split("== .+ ==[^=]", wiki_page_content): if not section.isspace(): prep_section = tokenizer.tokenize(preprocessor.preprocess(section)) if len(prep_section) > 500: subsections = [] for subsection in re.split("=== .+ ===", section): if subsection.isspace(): continue prep_subsection = tokenizer.tokenize( preprocessor.preprocess(subsection) ) subsections.append(subsection) # logger.info(f"Subsection found with length: {len(prep_subsection)}") sections.extend(subsections) else: # logger.info(f"Regular Section with length: {len(prep_section)}") sections.append(section) full_len_sections = [] temp_section = "" for section in sections: if ( len(tokenizer.tokenize(preprocessor.preprocess(temp_section))) + len(tokenizer.tokenize(preprocessor.preprocess(section))) > 384 ): if temp_section == "": temp_section = section continue full_len_sections.append(temp_section) # logger.info( # f"full section length: {len(tokenizer.tokenize(preprocessor.preprocess(temp_section)))}" # ) temp_section = "" else: temp_section += " " + section + " " if temp_section != "": full_len_sections.append(temp_section) reader_time = Timer("electra", text="Reader Time: {:.2f}", logger=logging.info) reader_time.start() results = qa_pipe( question=[preprocessor.preprocess(question)] * len(full_len_sections), context=[preprocessor.preprocess(x) for x in full_len_sections], ) if not isinstance(results, list): results = [results] logger.info(f"Wiki Title: {unquote(page_name)}") logger.info(f"Total Sections: {len(sections)}") logger.info(f"Total Full Sections: {len(full_len_sections)}") for result, section in zip(results, full_len_sections): result["original"] = section answer_match = find_near_matches( " " + preprocessor.unpreprocess(result["answer"]) + " ", result["original"], max_l_dist=min(5, len(preprocessor.unpreprocess(result["answer"])) // 2), max_deletions=0, ) try: result["new_start"] = answer_match[0].start result["new_end"] = answer_match[0].end result["new_answer"] = answer_match[0].matched result["link"] = ( search_results[0].link + "#:~:text=" + result["new_answer"].strip() ) except: result["new_start"] = result["start"] result["new_end"] = result["end"] result["new_answer"] = result["answer"] result["original"] = preprocessor.preprocess(result["original"]) result["link"] = search_results[0].link logger.info(f"Answers: {preprocessor.preprocess(result['new_answer'])}") sorted_results = sorted(results, reverse=True, key=lambda x: x["score"]) return_dict = {} return_dict["title"] = unquote(page_name) return_dict["results"] = sorted_results reader_time.stop() logger.info(f"Total time spent: {reader_time.last + search_timer.last}") return return_dict