File size: 2,474 Bytes
7c39d15
 
 
 
4499b2e
7c39d15
 
 
 
d9e6239
7c39d15
 
 
37aeb5b
 
 
 
 
 
 
 
 
 
 
5a3e910
 
37aeb5b
 
 
 
04f25a3
7e5091e
 
 
 
 
 
9d4fa56
37aeb5b
 
 
 
0c552a7
69ac8ac
7e5091e
69ac8ac
9d4fa56
 
37aeb5b
 
 
 
 
 
 
69ac8ac
37aeb5b
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import shlex
import subprocess
subprocess.run(
    shlex.split(
        "pip install package/onnxruntime_gpu-1.17.0-cp310-cp310-manylinux_2_28_x86_64.whl --force-reinstall --no-deps"
    )
)
subprocess.run(
    shlex.split(
        "pip install package/nvdiffrast-0.3.1.torch-cp310-cp310-linux_x86_64.whl --force-reinstall --no-deps"
    )
)

if __name__ == "__main__":
    import os
    import sys
    sys.path.append(os.curdir)
    import torch
    torch.set_float32_matmul_precision('medium')
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.set_grad_enabled(False)

import fire
import gradio as gr
from gradio_app.gradio_3dgen import create_ui as create_3d_ui
from gradio_app.all_models import model_zoo


_TITLE = '''Unique3D: High-Quality and Efficient 3D Mesh Generation from a Single Image'''
_DESCRIPTION = '''

<div>
    <a style="display:inline-block" href='https://github.com/AiuniAI/Unique3D'><img alt="GitHub Repo stars" src="https://img.shields.io/github/stars/AiuniAI/Unique3D?style=social">
</a>
    <img alt="GitHub License" src="https://img.shields.io/github/license/AiuniAI/Unique3D">
</div>

# [Paper](https://arxiv.org/abs/2405.20343) | [Project page](https://wukailu.github.io/Unique3D/) | [Huggingface Demo](https://huggingface.co./spaces/Wuvin/Unique3D) | [Gradio Demo](https://u45213-bcf9-ef67553e.westx.seetacloud.com:8443/) | [Online Demo](https://www.aiuni.ai/)

* High-fidelity and diverse textured meshes generated by Unique3D from single-view images.

* The demo is still under construction, and more features are expected to be implemented soon.

* The demo takes around 50 seconds on L4, and about 60 seconds on Huggingface ZeroGPU.

* If the Huggingface Demo unfortunately hangs or is very crowded, you can use the Gradio Demo or Online Demo. The Online Demo is free to try, and the registration invitation code is `aiuni24`. However, the Online Demo is slightly different from the Gradio Demo, in that the inference speed is slower, and the generation results is less stable, but the quality of the texture is better.


'''

def launch():
    model_zoo.init_models()
        
    with gr.Blocks(
        title=_TITLE,
        # theme=gr.themes.Monochrome(),
    ) as demo:
        with gr.Row():
            with gr.Column(scale=1):
                gr.Markdown('# ' + _TITLE)
        gr.Markdown(_DESCRIPTION)
        create_3d_ui("wkl")

    demo.queue().launch(share=True)
    
if __name__ == '__main__':
    fire.Fire(launch)