Spaces:
Runtime error
Runtime error
File size: 14,170 Bytes
37aeb5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import torch
import numpy as np
from PIL import Image
import pymeshlab
import pymeshlab as ml
from pymeshlab import PercentageValue
from pytorch3d.renderer import TexturesVertex
from pytorch3d.structures import Meshes
from rembg import new_session, remove
import torch
import torch.nn.functional as F
from typing import List, Tuple
from PIL import Image
import trimesh
providers = [
('CUDAExecutionProvider', {
'device_id': 0,
'arena_extend_strategy': 'kSameAsRequested',
'gpu_mem_limit': 8 * 1024 * 1024 * 1024,
'cudnn_conv_algo_search': 'HEURISTIC',
})
]
session = new_session(providers=providers)
NEG_PROMPT="sketch, sculpture, hand drawing, outline, single color, NSFW, lowres, bad anatomy,bad hands, text, error, missing fingers, yellow sleeves, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry,(worst quality:1.4),(low quality:1.4)"
def load_mesh_with_trimesh(file_name, file_type=None):
import trimesh
mesh: trimesh.Trimesh = trimesh.load(file_name, file_type=file_type)
if isinstance(mesh, trimesh.Scene):
assert len(mesh.geometry) > 0
# save to obj first and load again to avoid offset issue
from io import BytesIO
with BytesIO() as f:
mesh.export(f, file_type="obj")
f.seek(0)
mesh = trimesh.load(f, file_type="obj")
if isinstance(mesh, trimesh.Scene):
# we lose texture information here
mesh = trimesh.util.concatenate(
tuple(trimesh.Trimesh(vertices=g.vertices, faces=g.faces)
for g in mesh.geometry.values()))
assert isinstance(mesh, trimesh.Trimesh)
vertices = torch.from_numpy(mesh.vertices).T
faces = torch.from_numpy(mesh.faces).T
colors = None
if mesh.visual is not None:
if hasattr(mesh.visual, 'vertex_colors'):
colors = torch.from_numpy(mesh.visual.vertex_colors)[..., :3].T / 255.
if colors is None:
# print("Warning: no vertex color found in mesh! Filling it with gray.")
colors = torch.ones_like(vertices) * 0.5
return vertices, faces, colors
def meshlab_mesh_to_py3dmesh(mesh: pymeshlab.Mesh) -> Meshes:
verts = torch.from_numpy(mesh.vertex_matrix()).float()
faces = torch.from_numpy(mesh.face_matrix()).long()
colors = torch.from_numpy(mesh.vertex_color_matrix()[..., :3]).float()
textures = TexturesVertex(verts_features=[colors])
return Meshes(verts=[verts], faces=[faces], textures=textures)
def py3dmesh_to_meshlab_mesh(meshes: Meshes) -> pymeshlab.Mesh:
colors_in = F.pad(meshes.textures.verts_features_packed().cpu().float(), [0,1], value=1).numpy().astype(np.float64)
m1 = pymeshlab.Mesh(
vertex_matrix=meshes.verts_packed().cpu().float().numpy().astype(np.float64),
face_matrix=meshes.faces_packed().cpu().long().numpy().astype(np.int32),
v_normals_matrix=meshes.verts_normals_packed().cpu().float().numpy().astype(np.float64),
v_color_matrix=colors_in)
return m1
def to_pyml_mesh(vertices,faces):
m1 = pymeshlab.Mesh(
vertex_matrix=vertices.cpu().float().numpy().astype(np.float64),
face_matrix=faces.cpu().long().numpy().astype(np.int32),
)
return m1
def to_py3d_mesh(vertices, faces, normals=None):
from pytorch3d.structures import Meshes
from pytorch3d.renderer.mesh.textures import TexturesVertex
mesh = Meshes(verts=[vertices], faces=[faces], textures=None)
if normals is None:
normals = mesh.verts_normals_packed()
# set normals as vertext colors
mesh.textures = TexturesVertex(verts_features=[normals / 2 + 0.5])
return mesh
def from_py3d_mesh(mesh):
return mesh.verts_list()[0], mesh.faces_list()[0], mesh.textures.verts_features_packed()
def rotate_normalmap_by_angle(normal_map: np.ndarray, angle: float):
"""
rotate along y-axis
normal_map: np.array, shape=(H, W, 3) in [-1, 1]
angle: float, in degree
"""
angle = angle / 180 * np.pi
R = np.array([[np.cos(angle), 0, np.sin(angle)], [0, 1, 0], [-np.sin(angle), 0, np.cos(angle)]])
return np.dot(normal_map.reshape(-1, 3), R.T).reshape(normal_map.shape)
# from view coord to front view world coord
def rotate_normals(normal_pils, return_types='np', rotate_direction=1) -> np.ndarray: # [0, 255]
n_views = len(normal_pils)
ret = []
for idx, rgba_normal in enumerate(normal_pils):
# rotate normal
normal_np = np.array(rgba_normal)[:, :, :3] / 255 # in [-1, 1]
alpha_np = np.array(rgba_normal)[:, :, 3] / 255 # in [0, 1]
normal_np = normal_np * 2 - 1
normal_np = rotate_normalmap_by_angle(normal_np, rotate_direction * idx * (360 / n_views))
normal_np = (normal_np + 1) / 2
normal_np = normal_np * alpha_np[..., None] # make bg black
rgba_normal_np = np.concatenate([normal_np * 255, alpha_np[:, :, None] * 255] , axis=-1)
if return_types == 'np':
ret.append(rgba_normal_np)
elif return_types == 'pil':
ret.append(Image.fromarray(rgba_normal_np.astype(np.uint8)))
else:
raise ValueError(f"return_types should be 'np' or 'pil', but got {return_types}")
return ret
def rotate_normalmap_by_angle_torch(normal_map, angle):
"""
rotate along y-axis
normal_map: torch.Tensor, shape=(H, W, 3) in [-1, 1], device='cuda'
angle: float, in degree
"""
angle = torch.tensor(angle / 180 * np.pi).to(normal_map)
R = torch.tensor([[torch.cos(angle), 0, torch.sin(angle)],
[0, 1, 0],
[-torch.sin(angle), 0, torch.cos(angle)]]).to(normal_map)
return torch.matmul(normal_map.view(-1, 3), R.T).view(normal_map.shape)
def do_rotate(rgba_normal, angle):
rgba_normal = torch.from_numpy(rgba_normal).float().cuda() / 255
rotated_normal_tensor = rotate_normalmap_by_angle_torch(rgba_normal[..., :3] * 2 - 1, angle)
rotated_normal_tensor = (rotated_normal_tensor + 1) / 2
rotated_normal_tensor = rotated_normal_tensor * rgba_normal[:, :, [3]] # make bg black
rgba_normal_np = torch.cat([rotated_normal_tensor * 255, rgba_normal[:, :, [3]] * 255], dim=-1).cpu().numpy()
return rgba_normal_np
def rotate_normals_torch(normal_pils, return_types='np', rotate_direction=1):
n_views = len(normal_pils)
ret = []
for idx, rgba_normal in enumerate(normal_pils):
# rotate normal
angle = rotate_direction * idx * (360 / n_views)
rgba_normal_np = do_rotate(np.array(rgba_normal), angle)
if return_types == 'np':
ret.append(rgba_normal_np)
elif return_types == 'pil':
ret.append(Image.fromarray(rgba_normal_np.astype(np.uint8)))
else:
raise ValueError(f"return_types should be 'np' or 'pil', but got {return_types}")
return ret
def change_bkgd(img_pils, new_bkgd=(0., 0., 0.)):
ret = []
new_bkgd = np.array(new_bkgd).reshape(1, 1, 3)
for rgba_img in img_pils:
img_np = np.array(rgba_img)[:, :, :3] / 255
alpha_np = np.array(rgba_img)[:, :, 3] / 255
ori_bkgd = img_np[:1, :1]
# color = ori_color * alpha + bkgd * (1-alpha)
# ori_color = (color - bkgd * (1-alpha)) / alpha
alpha_np_clamp = np.clip(alpha_np, 1e-6, 1) # avoid divide by zero
ori_img_np = (img_np - ori_bkgd * (1 - alpha_np[..., None])) / alpha_np_clamp[..., None]
img_np = np.where(alpha_np[..., None] > 0.05, ori_img_np * alpha_np[..., None] + new_bkgd * (1 - alpha_np[..., None]), new_bkgd)
rgba_img_np = np.concatenate([img_np * 255, alpha_np[..., None] * 255], axis=-1)
ret.append(Image.fromarray(rgba_img_np.astype(np.uint8)))
return ret
def change_bkgd_to_normal(normal_pils) -> List[Image.Image]:
n_views = len(normal_pils)
ret = []
for idx, rgba_normal in enumerate(normal_pils):
# calcuate background normal
target_bkgd = rotate_normalmap_by_angle(np.array([[[0., 0., 1.]]]), idx * (360 / n_views))
normal_np = np.array(rgba_normal)[:, :, :3] / 255 # in [-1, 1]
alpha_np = np.array(rgba_normal)[:, :, 3] / 255 # in [0, 1]
normal_np = normal_np * 2 - 1
old_bkgd = normal_np[:1,:1]
normal_np[alpha_np > 0.05] = (normal_np[alpha_np > 0.05] - old_bkgd * (1 - alpha_np[alpha_np > 0.05][..., None])) / alpha_np[alpha_np > 0.05][..., None]
normal_np = normal_np * alpha_np[..., None] + target_bkgd * (1 - alpha_np[..., None])
normal_np = (normal_np + 1) / 2
rgba_normal_np = np.concatenate([normal_np * 255, alpha_np[..., None] * 255] , axis=-1)
ret.append(Image.fromarray(rgba_normal_np.astype(np.uint8)))
return ret
def fix_vert_color_glb(mesh_path):
from pygltflib import GLTF2, Material, PbrMetallicRoughness
obj1 = GLTF2().load(mesh_path)
obj1.meshes[0].primitives[0].material = 0
obj1.materials.append(Material(
pbrMetallicRoughness = PbrMetallicRoughness(
baseColorFactor = [1.0, 1.0, 1.0, 1.0],
metallicFactor = 0.,
roughnessFactor = 1.0,
),
emissiveFactor = [0.0, 0.0, 0.0],
doubleSided = True,
))
obj1.save(mesh_path)
def srgb_to_linear(c_srgb):
c_linear = np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4)
return c_linear.clip(0, 1.)
def save_py3dmesh_with_trimesh_fast(meshes: Meshes, save_glb_path, apply_sRGB_to_LinearRGB=True):
# convert from pytorch3d meshes to trimesh mesh
vertices = meshes.verts_packed().cpu().float().numpy()
triangles = meshes.faces_packed().cpu().long().numpy()
np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
if save_glb_path.endswith(".glb"):
# rotate 180 along +Y
vertices[:, [0, 2]] = -vertices[:, [0, 2]]
if apply_sRGB_to_LinearRGB:
np_color = srgb_to_linear(np_color)
assert vertices.shape[0] == np_color.shape[0]
assert np_color.shape[1] == 3
assert 0 <= np_color.min() and np_color.max() <= 1, f"min={np_color.min()}, max={np_color.max()}"
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
mesh.remove_unreferenced_vertices()
# save mesh
mesh.export(save_glb_path)
if save_glb_path.endswith(".glb"):
fix_vert_color_glb(save_glb_path)
print(f"saving to {save_glb_path}")
def save_glb_and_video(save_mesh_prefix: str, meshes: Meshes, with_timestamp=True, dist=3.5, azim_offset=180, resolution=512, fov_in_degrees=1 / 1.15, cam_type="ortho", view_padding=60, export_video=True) -> Tuple[str, str]:
import time
if '.' in save_mesh_prefix:
save_mesh_prefix = ".".join(save_mesh_prefix.split('.')[:-1])
if with_timestamp:
save_mesh_prefix = save_mesh_prefix + f"_{int(time.time())}"
ret_mesh = save_mesh_prefix + ".glb"
# optimizied version
save_py3dmesh_with_trimesh_fast(meshes, ret_mesh)
return ret_mesh, "novideo"
def simple_clean_mesh(pyml_mesh: ml.Mesh, apply_smooth=True, stepsmoothnum=1, apply_sub_divide=False, sub_divide_threshold=0.25):
ms = ml.MeshSet()
ms.add_mesh(pyml_mesh, "cube_mesh")
if apply_smooth:
ms.apply_filter("apply_coord_laplacian_smoothing", stepsmoothnum=stepsmoothnum, cotangentweight=False)
if apply_sub_divide: # 5s, slow
ms.apply_filter("meshing_repair_non_manifold_vertices")
ms.apply_filter("meshing_repair_non_manifold_edges", method='Remove Faces')
ms.apply_filter("meshing_surface_subdivision_loop", iterations=2, threshold=PercentageValue(sub_divide_threshold))
return meshlab_mesh_to_py3dmesh(ms.current_mesh())
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
def simple_preprocess(input_image, rembg_session=session, background_color=255):
RES = 2048
input_image.thumbnail([RES, RES], Image.Resampling.LANCZOS)
if input_image.mode != 'RGBA':
image_rem = input_image.convert('RGBA')
input_image = remove(image_rem, alpha_matting=False, session=rembg_session)
arr = np.asarray(input_image)
alpha = np.asarray(input_image)[:, :, -1]
x_nonzero = np.nonzero((alpha > 60).sum(axis=1))
y_nonzero = np.nonzero((alpha > 60).sum(axis=0))
x_min = int(x_nonzero[0].min())
y_min = int(y_nonzero[0].min())
x_max = int(x_nonzero[0].max())
y_max = int(y_nonzero[0].max())
arr = arr[x_min: x_max, y_min: y_max]
input_image = Image.fromarray(arr)
input_image = expand2square(input_image, (background_color, background_color, background_color, 0))
return input_image
def init_target(img_pils, new_bkgd=(0., 0., 0.), device="cuda"):
# Convert the background color to a PyTorch tensor
new_bkgd = torch.tensor(new_bkgd, dtype=torch.float32).view(1, 1, 3).to(device)
# Convert all images to PyTorch tensors and process them
imgs = torch.stack([torch.from_numpy(np.array(img, dtype=np.float32)) for img in img_pils]).to(device) / 255
img_nps = imgs[..., :3]
alpha_nps = imgs[..., 3]
ori_bkgds = img_nps[:, :1, :1]
# Avoid divide by zero and calculate the original image
alpha_nps_clamp = torch.clamp(alpha_nps, 1e-6, 1)
ori_img_nps = (img_nps - ori_bkgds * (1 - alpha_nps.unsqueeze(-1))) / alpha_nps_clamp.unsqueeze(-1)
ori_img_nps = torch.clamp(ori_img_nps, 0, 1)
img_nps = torch.where(alpha_nps.unsqueeze(-1) > 0.05, ori_img_nps * alpha_nps.unsqueeze(-1) + new_bkgd * (1 - alpha_nps.unsqueeze(-1)), new_bkgd)
rgba_img_np = torch.cat([img_nps, alpha_nps.unsqueeze(-1)], dim=-1)
return rgba_img_np |