Spaces:
Runtime error
Runtime error
Avril Lalaine
commited on
Commit
·
bca8e6b
1
Parent(s):
cbee212
update
Browse files- Dockerfile +8 -0
- app.py +24 -24
Dockerfile
CHANGED
@@ -1,11 +1,19 @@
|
|
1 |
FROM python:3.9-slim
|
2 |
|
|
|
3 |
WORKDIR /app
|
4 |
|
|
|
|
|
|
|
|
|
5 |
COPY . .
|
6 |
|
|
|
7 |
RUN pip install --no-cache-dir -r requirements.txt
|
8 |
|
|
|
9 |
EXPOSE 8080
|
10 |
|
|
|
11 |
CMD ["python", "app.py"]
|
|
|
1 |
FROM python:3.9-slim
|
2 |
|
3 |
+
# Set working directory inside the container
|
4 |
WORKDIR /app
|
5 |
|
6 |
+
# Set the TRANSFORMERS_CACHE environment variable to a writable directory
|
7 |
+
ENV TRANSFORMERS_CACHE=/app/cache
|
8 |
+
|
9 |
+
# Copy the contents of your local directory to the working directory in the container
|
10 |
COPY . .
|
11 |
|
12 |
+
# Install dependencies
|
13 |
RUN pip install --no-cache-dir -r requirements.txt
|
14 |
|
15 |
+
# Expose port 8080 for your app
|
16 |
EXPOSE 8080
|
17 |
|
18 |
+
# Run the Flask app
|
19 |
CMD ["python", "app.py"]
|
app.py
CHANGED
@@ -1,7 +1,15 @@
|
|
|
|
1 |
from pathlib import Path
|
2 |
from flask import Flask, render_template, request, jsonify
|
3 |
-
from transformers import
|
4 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
app = Flask(__name__)
|
7 |
|
@@ -12,7 +20,6 @@ BERT_TOKENIZER = 'bert-base-uncased'
|
|
12 |
ROBERTA_TOKENIZER = 'jcblaise/roberta-tagalog-base'
|
13 |
ELECTRA_TOKENIZER = 'google/electra-base-discriminator'
|
14 |
|
15 |
-
|
16 |
LABELS = ["fake", "real"]
|
17 |
|
18 |
class Classifier:
|
@@ -54,19 +61,15 @@ class Classifier:
|
|
54 |
}
|
55 |
return result
|
56 |
|
57 |
-
|
58 |
-
|
59 |
@app.route('/')
|
60 |
def home():
|
61 |
return render_template('index.html')
|
62 |
|
63 |
@app.route('/detect', methods=['POST'])
|
64 |
def detect():
|
65 |
-
|
66 |
try:
|
67 |
data = request.get_json()
|
68 |
news_text = data.get('text')
|
69 |
-
|
70 |
model_chosen = data.get('model')
|
71 |
|
72 |
print(model_chosen)
|
@@ -77,50 +80,47 @@ def detect():
|
|
77 |
'message': 'No text provided'
|
78 |
}), 400
|
79 |
|
80 |
-
switch={
|
81 |
-
'nonaug-bert':'bert-nonaug',
|
82 |
-
'aug-bert':'bert-aug',
|
83 |
-
'nonaug-tagbert':'tagbert-nonaug',
|
84 |
-
'aug-tagbert':'tagbert-aug',
|
85 |
-
'nonaug-electra':'electra-nonaug',
|
86 |
-
'aug-electra':'electra-aug'
|
87 |
}
|
88 |
|
89 |
model_p = switch.get(model_chosen)
|
90 |
|
91 |
-
print("model",model_p)
|
92 |
-
|
93 |
-
MODEL_PATH = Path("D:\\Aplil\\skibidi-thesis\\webapp", model_p)
|
94 |
|
|
|
|
|
95 |
|
96 |
print(MODEL_PATH)
|
97 |
|
98 |
tokenizer = model_chosen.split("-")[1]
|
99 |
-
|
100 |
tokenizer_chosen = {
|
101 |
-
'bert':BERT_TOKENIZER,
|
102 |
-
'tagbert':ROBERTA_TOKENIZER,
|
103 |
-
'electra':ELECTRA_TOKENIZER
|
104 |
}
|
105 |
|
106 |
print(tokenizer)
|
107 |
|
108 |
-
classifier = Classifier(MODEL_PATH,DEVICE,tokenizer_chosen.get(tokenizer))
|
109 |
|
110 |
result = classifier.predict(news_text)
|
111 |
print(result['confidence_scores'])
|
112 |
-
|
113 |
|
114 |
if result['predicted_class'] == "fake":
|
115 |
out = "News Needs Further Validation"
|
116 |
else:
|
117 |
out = "News is Real"
|
118 |
|
119 |
-
|
120 |
return jsonify({
|
121 |
'status': 'success',
|
122 |
'prediction': out,
|
123 |
-
'confidence':result['confidence_scores']
|
124 |
})
|
125 |
|
126 |
except Exception as e:
|
|
|
1 |
+
import os
|
2 |
from pathlib import Path
|
3 |
from flask import Flask, render_template, request, jsonify
|
4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
5 |
import torch
|
6 |
+
import warnings
|
7 |
+
|
8 |
+
# Suppress FutureWarnings
|
9 |
+
warnings.filterwarnings("ignore", category=FutureWarning)
|
10 |
+
|
11 |
+
# Set the TRANSFORMERS_CACHE to a writable directory
|
12 |
+
os.environ["TRANSFORMERS_CACHE"] = "./cache" # Modify this path if needed
|
13 |
|
14 |
app = Flask(__name__)
|
15 |
|
|
|
20 |
ROBERTA_TOKENIZER = 'jcblaise/roberta-tagalog-base'
|
21 |
ELECTRA_TOKENIZER = 'google/electra-base-discriminator'
|
22 |
|
|
|
23 |
LABELS = ["fake", "real"]
|
24 |
|
25 |
class Classifier:
|
|
|
61 |
}
|
62 |
return result
|
63 |
|
|
|
|
|
64 |
@app.route('/')
|
65 |
def home():
|
66 |
return render_template('index.html')
|
67 |
|
68 |
@app.route('/detect', methods=['POST'])
|
69 |
def detect():
|
|
|
70 |
try:
|
71 |
data = request.get_json()
|
72 |
news_text = data.get('text')
|
|
|
73 |
model_chosen = data.get('model')
|
74 |
|
75 |
print(model_chosen)
|
|
|
80 |
'message': 'No text provided'
|
81 |
}), 400
|
82 |
|
83 |
+
switch = {
|
84 |
+
'nonaug-bert': 'bert-nonaug',
|
85 |
+
'aug-bert': 'bert-aug',
|
86 |
+
'nonaug-tagbert': 'tagbert-nonaug',
|
87 |
+
'aug-tagbert': 'tagbert-aug',
|
88 |
+
'nonaug-electra': 'electra-nonaug',
|
89 |
+
'aug-electra': 'electra-aug'
|
90 |
}
|
91 |
|
92 |
model_p = switch.get(model_chosen)
|
93 |
|
94 |
+
print("model", model_p)
|
|
|
|
|
95 |
|
96 |
+
# Adjusting the model path to point to the correct folder inside 'webapp'
|
97 |
+
MODEL_PATH = Path("huggingface", "webapp", model_p) # Corrected model path to webapp folder
|
98 |
|
99 |
print(MODEL_PATH)
|
100 |
|
101 |
tokenizer = model_chosen.split("-")[1]
|
|
|
102 |
tokenizer_chosen = {
|
103 |
+
'bert': BERT_TOKENIZER,
|
104 |
+
'tagbert': ROBERTA_TOKENIZER,
|
105 |
+
'electra': ELECTRA_TOKENIZER
|
106 |
}
|
107 |
|
108 |
print(tokenizer)
|
109 |
|
110 |
+
classifier = Classifier(MODEL_PATH, DEVICE, tokenizer_chosen.get(tokenizer))
|
111 |
|
112 |
result = classifier.predict(news_text)
|
113 |
print(result['confidence_scores'])
|
|
|
114 |
|
115 |
if result['predicted_class'] == "fake":
|
116 |
out = "News Needs Further Validation"
|
117 |
else:
|
118 |
out = "News is Real"
|
119 |
|
|
|
120 |
return jsonify({
|
121 |
'status': 'success',
|
122 |
'prediction': out,
|
123 |
+
'confidence': result['confidence_scores']
|
124 |
})
|
125 |
|
126 |
except Exception as e:
|