Spaces:
Running
on
T4
Running
on
T4
import torch | |
import gradio as gr | |
import pytube as pt | |
from transformers import pipeline | |
MODEL_NAME = "openai/whisper-large-v2" | |
device = 0 if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
all_special_ids = pipe.tokenizer.all_special_ids | |
transcribe_token_id = all_special_ids[-5] | |
translate_token_id = all_special_ids[-6] | |
def transcribe(microphone, state, task="transcribe"): | |
file = microphone | |
pipe.model.config.forced_decoder_ids = [[2, transcribe_token_id if task=="transcribe" else translate_token_id]] | |
text = pipe(file)["text"] | |
return state + "\n" + text, state + "\n" + text | |
mf_transcribe = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(source="microphone", type="filepath", optional=True), | |
gr.State(value="") | |
], | |
outputs=[ | |
gr.Textbox(lines=15), | |
gr.State()] | |
, | |
layout="horizontal", | |
theme="huggingface", | |
title="Whisper Large V2: Transcribe Audio", | |
live=True, | |
description=( | |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the" | |
f" checkpoint [{MODEL_NAME}](https://huggingface.co./{MODEL_NAME}) and 🤗 Transformers to transcribe audio files" | |
" of arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
mf_transcribe.launch(enable_queue=True) | |