File size: 4,946 Bytes
420400a
0a57289
420400a
 
84af4c6
420400a
 
 
7275eb6
 
 
0a57289
 
 
7275eb6
 
 
 
 
670efcf
7275eb6
 
0a57289
 
 
 
420400a
 
7275eb6
420400a
7275eb6
670efcf
420400a
 
0a57289
420400a
 
0a57289
420400a
 
670efcf
420400a
0a57289
420400a
 
670efcf
7275eb6
 
420400a
 
 
 
 
670efcf
 
 
420400a
670efcf
 
7275eb6
420400a
7275eb6
 
420400a
 
 
 
 
 
 
 
7275eb6
 
 
 
 
 
420400a
 
 
 
 
 
 
 
 
 
09da2a2
4d2def1
 
 
 
420400a
 
 
670efcf
7275eb6
 
420400a
 
0a57289
 
 
 
420400a
4d2def1
 
 
 
420400a
 
 
 
 
4d2def1
420400a
 
 
0a57289
84af4c6
420400a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import gradio as gr
import torch
from torchaudio.sox_effects import apply_effects_file
from transformers import AutoFeatureExtractor, AutoModelForAudioXVector
import os

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

STYLE = """
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" integrity="sha256-YvdLHPgkqJ8DVUxjjnGVlMMJtNimJ6dYkowFFvp4kKs=" crossorigin="anonymous">
"""
OUTPUT_OK = (
    STYLE
    + """
    <div class="container">
        <div class="row"><h1 style="text-align: center">The speakers are</h1></div>
        <div class="row"><h1 class="display-1 text-success" style="text-align: center">{:.1f}%</h1></div>
        <div class="row"><h1 style="text-align: center">similar</h1></div>
        <div class="row"><h1 class="text-success" style="text-align: center">Welcome, human!</h1></div>
        <div class="row"><small style="text-align: center">(You must get at least 85% to be considered the same person)</small><div class="row">
    </div>
"""
)
OUTPUT_FAIL = (
    STYLE
    + """
    <div class="container">
        <div class="row"><h1 style="text-align: center">The speakers are</h1></div>
        <div class="row"><h1 class="display-1 text-danger" style="text-align: center">{:.1f}%</h1></div>
        <div class="row"><h1 style="text-align: center">similar</h1></div>
        <div class="row"><h1 class="text-danger" style="text-align: center">You shall not pass!</h1></div>
        <div class="row"><small style="text-align: center">(You must get at least 85% to be considered the same person)</small><div class="row">
    </div>
"""
)

EFFECTS = [
    ["remix", "-"],
    ["channels", "1"],
    ["rate", "16000"],
    ["gain", "-1.0"],
    ["silence", "1", "0.1", "0.1%", "-1", "0.1", "0.1%"],
    ["trim", "0", "10"],
]

THRESHOLD = 0.85

model_name = "microsoft/unispeech-sat-base-plus-sv"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = AutoModelForAudioXVector.from_pretrained(model_name).to(device)
cosine_sim = torch.nn.CosineSimilarity(dim=-1)


def similarity_fn(path1, path2):
    if not (path1 and path2):
        return '<b style="color:red">ERROR: Please record audio for *both* speakers!</b>'

    wav1, _ = apply_effects_file(path1, EFFECTS)
    wav2, _ = apply_effects_file(path2, EFFECTS)
    print(wav1.shape, wav2.shape)

    input1 = feature_extractor(wav1.squeeze(0), return_tensors="pt", sampling_rate=16000).input_values.to(device)
    input2 = feature_extractor(wav2.squeeze(0), return_tensors="pt", sampling_rate=16000).input_values.to(device)

    with torch.no_grad():
        emb1 = model(input1).embeddings
        emb2 = model(input2).embeddings
    emb1 = torch.nn.functional.normalize(emb1, dim=-1).cpu()
    emb2 = torch.nn.functional.normalize(emb2, dim=-1).cpu()
    similarity = cosine_sim(emb1, emb2).numpy()[0]

    if similarity >= THRESHOLD:
        output = OUTPUT_OK.format(similarity * 100)
    else:
        output = OUTPUT_FAIL.format(similarity * 100)

    return output


inputs = [
    gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #1"),
    gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Speaker #2"),
]
output = gr.outputs.HTML(label="")


description = (
    "This demo from Microsoft will compare two speech samples and determine if they are from the same speaker. "
    "Try it with your own voice! If you find an incorrect prediction, you can click FLAG to save the recordings to a public dataset: "
    "https://huggingface.co./datasets/abidlabs/voice-verification-adversarial-dataset, "
    "consisting of samples on which the model makes mistakes, which may further improve research in this field. Disclaimer: this will "
    "save the recordings to a PUBLIC dataset so please be careful about what you FLAG."
)
article = (
    "<p style='text-align: center'>"
    "<a href='https://huggingface.co./microsoft/unispeech-sat-large-sv' target='_blank'>πŸŽ™οΈ Learn more about UniSpeech-SAT</a> | "
    "<a href='https://arxiv.org/abs/2110.05752' target='_blank'>πŸ“š UniSpeech-SAT paper</a> | "
    "<a href='https://www.danielpovey.com/files/2018_icassp_xvectors.pdf' target='_blank'>πŸ“š X-Vector paper</a>"
    "</p>"
)
examples = [
    ["samples/cate_blanch.mp3", "samples/cate_blanch_2.mp3"],
    ["samples/cate_blanch.mp3", "samples/kirsten_dunst.wav"],
]

HF_TOKEN = os.getenv('HF_TOKEN')
hf_saver = gr.HuggingFaceDatasetSaver(HF_TOKEN, "voice-verification-adversarial-dataset")


interface = gr.Interface(
    fn=similarity_fn,
    inputs=inputs,
    outputs=output,
    description=description,
    title="Break this voice verification model!",
    layout="horizontal",
    theme="huggingface",
    live=False,
    examples=examples,
    article="[Link to dataset](https://huggingface.co./datasets/abidlabs/voice-verification-adversarial-dataset)",
)
interface.launch(enable_queue=True)