# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import itertools import logging import os import sys import time from typing import Any, List, Optional, Union import numpy as np import torch import torch.nn.functional as F from fairseq.data import data_utils from fairseq.data.fairseq_dataset import FairseqDataset from python_speech_features import logfbank from scipy.io import wavfile DBG=True if len(sys.argv) == 1 else False if DBG: import utils as custom_utils logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "DEBUG").upper(), stream=sys.stdout, ) else: from . import utils as custom_utils logger = logging.getLogger(__name__) def load_audio_visual(manifest_path, max_keep, min_keep, frame_rate, label_paths, label_rates, tol=0.1): def is_audio_label_aligned(audio_dur, label_durs): return all([abs(audio_dur - label_dur) max_keep: n_long += 1 elif (not is_seq_label) and (not is_audio_label_aligned(sz/frame_rate, dur_from_label_list[ind])): n_unaligned += 1 else: video_path = items[1] audio_path = items[2] audio_id = items[0] names.append((video_path, audio_path+':'+audio_id)) inds.append(ind) sizes.append(sz) tot = ind + 1 logger.info( ( f"max_keep={max_keep}, min_keep={min_keep}, " f"loaded {len(names)}, skipped {n_short} short and {n_long} long and {n_unaligned} unaligned, " f"longest-loaded={max(sizes)}, shortest-loaded={min(sizes)}" ) ) return root, names, inds, tot, sizes def load_label(label_path, inds, tot): with open(label_path) as f: labels = [line.rstrip() for line in f] assert ( len(labels) == tot ), f"number of labels does not match ({len(labels)} != {tot})" labels = [labels[i] for i in inds] return labels def load_label_offset(label_path, inds, tot): with open(label_path) as f: code_lengths = [len(line.encode("utf-8")) for line in f] assert ( len(code_lengths) == tot ), f"number of labels does not match ({len(code_lengths)} != {tot})" offsets = list(itertools.accumulate([0] + code_lengths)) offsets = [(offsets[i], offsets[i + 1]) for i in inds] return offsets def verify_label_lengths( audio_sizes, audio_rate, label_path, label_rate, inds, tot, tol=0.1, # tolerance in seconds ): if label_rate < 0: logger.info(f"{label_path} is sequence label. skipped") return with open(label_path) as f: lengths = [len(line.rstrip().split()) for line in f] assert len(lengths) == tot lengths = [lengths[i] for i in inds] num_invalid = 0 for i, ind in enumerate(inds): dur_from_audio = audio_sizes[i] / audio_rate dur_from_label = lengths[i] / label_rate if abs(dur_from_audio - dur_from_label) > tol: logger.warning( ( f"audio and label duration differ too much " f"(|{dur_from_audio} - {dur_from_label}| > {tol}) " f"in line {ind+1} of {label_path}. Check if `label_rate` " f"is correctly set (currently {label_rate}). " f"num. of samples = {audio_sizes[i]}; " f"label length = {lengths[i]}" ) ) num_invalid += 1 if num_invalid > 0: logger.warning( f"total {num_invalid} (audio, label) pairs with mismatched lengths" ) class AVHubertDataset(FairseqDataset): def __init__( self, manifest_path: str, sample_rate: float, label_paths: List[str], label_rates: Union[List[float], float], # -1 for sequence labels pad_list: List[str], eos_list: List[str], label_processors: Optional[List[Any]] = None, max_keep_sample_size: Optional[int] = None, min_keep_sample_size: Optional[int] = None, max_sample_size: Optional[int] = None, shuffle: bool = True, pad_audio: bool = False, normalize: bool = False, store_labels: bool = True, random_crop: bool = False, single_target: bool = False, stack_order_audio: int=1, skip_verify: bool=False, image_mean: float=0, image_std: float=1, image_crop_size: int=88, image_aug: bool=False, modalities: Optional[List[str]]=None, is_s2s=False, noise_fn=None, noise_prob=0, noise_snr=0, noise_num=1 ): self.label_rates = ( [label_rates for _ in range(len(label_paths))] if isinstance(label_rates, int) else label_rates ) self.modalities = set(modalities) self.audio_root, self.names, inds, tot, self.sizes = load_audio_visual(manifest_path, max_keep_sample_size, min_keep_sample_size, frame_rate=sample_rate, label_paths=label_paths, label_rates=self.label_rates) self.sample_rate = sample_rate self.stack_order_audio = stack_order_audio self.shuffle = shuffle self.random_crop = random_crop self.num_labels = len(label_paths) self.pad_list = pad_list self.eos_list = eos_list self.label_processors = label_processors self.single_target = single_target self.store_labels = store_labels self.is_s2s = is_s2s self.noise_wav, self.noise_prob, self.noise_snr, self.noise_num = [ln.strip() for ln in open(noise_fn).readlines()] if noise_fn is not None else [], noise_prob, noise_snr, noise_num assert self.single_target == (self.label_rates[0] == -1), f"single target should be equivalent to sequence label (label_rate==-1)" if store_labels: self.label_list = [load_label(p, inds, tot) for p in label_paths] else: self.label_paths = label_paths self.label_offsets_list = [ load_label_offset(p, inds, tot) for p in label_paths ] assert ( label_processors is None or len(label_processors) == self.num_labels ) if not skip_verify: for label_path, label_rate in zip(label_paths, self.label_rates): verify_label_lengths(self.sizes, self.sample_rate, label_path, label_rate, inds, tot) else: logger.info(f"Skip label alignment verifying") self.max_sample_size = ( max_sample_size if max_sample_size is not None else sys.maxsize ) self.pad_audio = pad_audio self.normalize = normalize if image_aug: self.transform = custom_utils.Compose([ custom_utils.Normalize( 0.0,255.0 ), custom_utils.RandomCrop((image_crop_size, image_crop_size)), custom_utils.HorizontalFlip(0.5), custom_utils.Normalize(image_mean, image_std) ]) else: self.transform = custom_utils.Compose([ custom_utils.Normalize( 0.0,255.0 ), custom_utils.CenterCrop((image_crop_size, image_crop_size)), custom_utils.Normalize(image_mean, image_std) ]) logger.info(f"image transform: {self.transform}") logger.info( f"pad_audio={pad_audio}, random_crop={random_crop}, " f"normalize={normalize}, max_sample_size={self.max_sample_size}, " f"seqs2seq data={self.is_s2s},") logger.info( f"Noise wav: {noise_fn}->{len(self.noise_wav)} wav, Prob: {self.noise_prob}, SNR: {self.noise_snr}, Number of mixture: {self.noise_num}" ) def get_label(self, index, label_idx): if self.store_labels: label = self.label_list[label_idx][index] else: with open(self.label_paths[label_idx]) as f: offset_s, offset_e = self.label_offsets_list[label_idx][index] f.seek(offset_s) label = f.read(offset_e - offset_s) if self.label_processors is not None: label = self.label_processors[label_idx](label) return label def get_labels(self, index): return [self.get_label(index, i) for i in range(self.num_labels)] def load_feature(self, mix_name): """ Load image and audio feature Returns: video_feats: numpy.ndarray of shape [T, H, W, 1], audio_feats: numpy.ndarray of shape [T, F] """ def stacker(feats, stack_order): """ Concatenating consecutive audio frames Args: feats - numpy.ndarray of shape [T, F] stack_order - int (number of neighboring frames to concatenate Returns: feats - numpy.ndarray of shape [T', F'] """ feat_dim = feats.shape[1] if len(feats) % stack_order != 0: res = stack_order - len(feats) % stack_order res = np.zeros([res, feat_dim]).astype(feats.dtype) feats = np.concatenate([feats, res], axis=0) feats = feats.reshape((-1, stack_order, feat_dim)).reshape(-1, stack_order*feat_dim) return feats video_fn, audio_fn = mix_name if 'video' in self.modalities: video_feats = self.load_video(video_fn) # [T, H, W, 1] else: video_feats = None if 'audio' in self.modalities: audio_fn = audio_fn.split(':')[0] sample_rate, wav_data = wavfile.read(audio_fn) assert sample_rate == 16_000 and len(wav_data.shape) == 1 if np.random.rand() < self.noise_prob: wav_data = self.add_noise(wav_data) audio_feats = logfbank(wav_data, samplerate=sample_rate).astype(np.float32) # [T, F] audio_feats = stacker(audio_feats, self.stack_order_audio) # [T/stack_order_audio, F*stack_order_audio] else: audio_feats = None if audio_feats is not None and video_feats is not None: diff = len(audio_feats) - len(video_feats) if diff < 0: audio_feats = np.concatenate([audio_feats, np.zeros([-diff, audio_feats.shape[-1]], dtype=audio_feats.dtype)]) elif diff > 0: audio_feats = audio_feats[:-diff] return video_feats, audio_feats def load_video(self, audio_name): feats = custom_utils.load_video(os.path.join(self.audio_root, audio_name)) feats = self.transform(feats) feats = np.expand_dims(feats, axis=-1) return feats def select_noise(self): rand_indexes = np.random.randint(0, len(self.noise_wav), size=self.noise_num) noise_wav = [] for x in rand_indexes: noise_wav.append(wavfile.read(self.noise_wav[x])[1].astype(np.float32)) if self.noise_num == 1: return noise_wav[0] else: min_len = min([len(x) for x in noise_wav]) noise_wav = [x[:min_len] for x in noise_wav] noise_wav = np.floor(np.stack(noise_wav).mean(axis=0)) return noise_wav def add_noise(self, clean_wav): clean_wav = clean_wav.astype(np.float32) noise_wav = self.select_noise() if type(self.noise_snr) == int or type(self.noise_snr) == float: snr = self.noise_snr elif type(self.noise_snr) == tuple: snr = np.random.randint(self.noise_snr[0], self.noise_snr[1]+1) clean_rms = np.sqrt(np.mean(np.square(clean_wav), axis=-1)) if len(clean_wav) > len(noise_wav): ratio = int(np.ceil(len(clean_wav)/len(noise_wav))) noise_wav = np.concatenate([noise_wav for _ in range(ratio)]) if len(clean_wav) < len(noise_wav): start = 0 noise_wav = noise_wav[start: start + len(clean_wav)] noise_rms = np.sqrt(np.mean(np.square(noise_wav), axis=-1)) adjusted_noise_rms = clean_rms / (10**(snr/20)) adjusted_noise_wav = noise_wav * (adjusted_noise_rms / noise_rms) mixed = clean_wav + adjusted_noise_wav #Avoid clipping noise max_int16 = np.iinfo(np.int16).max min_int16 = np.iinfo(np.int16).min if mixed.max(axis=0) > max_int16 or mixed.min(axis=0) < min_int16: if mixed.max(axis=0) >= abs(mixed.min(axis=0)): reduction_rate = max_int16 / mixed.max(axis=0) else : reduction_rate = min_int16 / mixed.min(axis=0) mixed = mixed * (reduction_rate) mixed = mixed.astype(np.int16) return mixed def __getitem__(self, index): video_feats, audio_feats = self.load_feature(self.names[index]) audio_feats, video_feats = torch.from_numpy(audio_feats.astype(np.float32)) if audio_feats is not None else None, torch.from_numpy(video_feats.astype(np.float32)) if video_feats is not None else None if self.normalize and 'audio' in self.modalities: with torch.no_grad(): audio_feats = F.layer_norm(audio_feats, audio_feats.shape[1:]) labels = self.get_labels(index) fid = self.names[index][1].split(':')[1] return {"id": index, 'fid': fid, "video_source": video_feats, 'audio_source': audio_feats, "label_list": labels} def __len__(self): return len(self.sizes) def crop_to_max_size(self, wav, target_size, start=None): size = len(wav) diff = size - target_size if diff <= 0: return wav, 0 # longer utterances if start is None: start, end = 0, target_size if self.random_crop: start = np.random.randint(0, diff + 1) end = size - diff + start else: end = start + target_size return wav[start:end], start def collater(self, samples): samples = [s for s in samples if s["id"] is not None] if len(samples) == 0: return {} audio_source, video_source = [s["audio_source"] for s in samples], [s["video_source"] for s in samples] if audio_source[0] is None: audio_source = None if video_source[0] is None: video_source = None if audio_source is not None: audio_sizes = [len(s) for s in audio_source] else: audio_sizes = [len(s) for s in video_source] if self.pad_audio: audio_size = min(max(audio_sizes), self.max_sample_size) else: audio_size = min(min(audio_sizes), self.max_sample_size) if audio_source is not None: collated_audios, padding_mask, audio_starts = self.collater_audio(audio_source, audio_size) else: collated_audios, audio_starts = None, None if video_source is not None: collated_videos, padding_mask, audio_starts = self.collater_audio(video_source, audio_size, audio_starts) else: collated_videos = None targets_by_label = [ [s["label_list"][i] for s in samples] for i in range(self.num_labels) ] targets_list, lengths_list, ntokens_list = self.collater_label( targets_by_label, audio_size, audio_starts ) source = {"audio": collated_audios, "video": collated_videos} net_input = {"source": source, "padding_mask": padding_mask} batch = { "id": torch.LongTensor([s["id"] for s in samples]), "net_input": net_input, "utt_id": [s['fid'] for s in samples] } if self.single_target: batch["target_lengths"] = lengths_list[0] batch["ntokens"] = ntokens_list[0] if self.is_s2s: batch['target'], net_input['prev_output_tokens'] = targets_list[0][0], targets_list[0][1] else: batch["target"] = targets_list[0] else: batch["target_lengths_list"] = lengths_list batch["ntokens_list"] = ntokens_list batch["target_list"] = targets_list return batch def collater_audio(self, audios, audio_size, audio_starts=None): audio_feat_shape = list(audios[0].shape[1:]) collated_audios = audios[0].new_zeros([len(audios), audio_size]+audio_feat_shape) padding_mask = ( torch.BoolTensor(len(audios), audio_size).fill_(False) # ) start_known = audio_starts is not None audio_starts = [0 for _ in audios] if not start_known else audio_starts for i, audio in enumerate(audios): diff = len(audio) - audio_size if diff == 0: collated_audios[i] = audio elif diff < 0: assert self.pad_audio collated_audios[i] = torch.cat( [audio, audio.new_full([-diff]+audio_feat_shape, 0.0)] ) padding_mask[i, diff:] = True else: collated_audios[i], audio_starts[i] = self.crop_to_max_size( audio, audio_size, audio_starts[i] if start_known else None ) if len(audios[0].shape) == 2: collated_audios = collated_audios.transpose(1, 2) # [B, T, F] -> [B, F, T] else: collated_audios = collated_audios.permute((0, 4, 1, 2, 3)).contiguous() # [B, T, H, W, C] -> [B, C, T, H, W] return collated_audios, padding_mask, audio_starts def collater_frm_label( self, targets, audio_size, audio_starts, label_rate, pad ): assert label_rate > 0 s2f = label_rate / self.sample_rate # num label per sample frm_starts = [int(round(s * s2f)) for s in audio_starts] frm_size = int(round(audio_size * s2f)) if not self.pad_audio: rem_size = [len(t) - s for t, s in zip(targets, frm_starts)] frm_size = min(frm_size, *rem_size) targets = [t[s: s + frm_size] for t, s in zip(targets, frm_starts)] logger.debug(f"audio_starts={audio_starts}") logger.debug(f"frame_starts={frm_starts}") logger.debug(f"frame_size={frm_size}") lengths = torch.LongTensor([len(t) for t in targets]) ntokens = lengths.sum().item() targets = data_utils.collate_tokens( targets, pad_idx=pad, left_pad=False ) return targets, lengths, ntokens def collater_seq_label(self, targets, pad): lengths = torch.LongTensor([len(t) for t in targets]) ntokens = lengths.sum().item() targets = data_utils.collate_tokens( targets, pad_idx=pad, left_pad=False ) return targets, lengths, ntokens def collater_seq_label_s2s(self, targets, pad): lengths = torch.LongTensor([len(t) for t in targets]) ntokens = lengths.sum().item() pad, eos = self.label_processors[0].dictionary.pad(), self.label_processors[0].dictionary.eos() targets_ = data_utils.collate_tokens(targets, pad_idx=pad, eos_idx=eos, left_pad=False) prev_output_tokens = data_utils.collate_tokens(targets, pad_idx=pad, eos_idx=eos, left_pad=False, move_eos_to_beginning=True) return (targets_, prev_output_tokens), lengths, ntokens def collater_label(self, targets_by_label, audio_size, audio_starts): targets_list, lengths_list, ntokens_list = [], [], [] itr = zip(targets_by_label, self.label_rates, self.pad_list) for targets, label_rate, pad in itr: if label_rate == -1: if self.is_s2s: targets, lengths, ntokens = self.collater_seq_label_s2s(targets, pad) else: targets, lengths, ntokens = self.collater_seq_label(targets, pad) else: targets, lengths, ntokens = self.collater_frm_label( targets, audio_size, audio_starts, label_rate, pad ) targets_list.append(targets) lengths_list.append(lengths) ntokens_list.append(ntokens) return targets_list, lengths_list, ntokens_list def num_tokens(self, index): return self.size(index) def size(self, index): if self.pad_audio: return self.sizes[index] return min(self.sizes[index], self.max_sample_size) def ordered_indices(self): if self.shuffle: order = [np.random.permutation(len(self))] else: order = [np.arange(len(self))] order.append(self.sizes) return np.lexsort(order)[::-1]