# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import os,sys import logging from typing import Dict, List, Optional, Tuple import numpy as np import torch import torch.nn as nn from dataclasses import dataclass, field from fairseq import utils from fairseq.data.data_utils import compute_mask_indices from fairseq.data.dictionary import Dictionary from fairseq.dataclass import ChoiceEnum, FairseqDataclass from fairseq.models import BaseFairseqModel, register_model from fairseq.models.wav2vec.wav2vec2 import ( ConvFeatureExtractionModel, TransformerEncoder, ) from fairseq.modules import GradMultiply, LayerNorm from copy import deepcopy DBG=True if len(sys.argv) == 1 else False if DBG: from hubert_pretraining import ( AVHubertPretrainingConfig, AVHubertPretrainingTask, ) from resnet import ResEncoder logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) from utils import compute_mask_indices from decoder import TransformerDecoder else: from .hubert_pretraining import ( AVHubertPretrainingConfig, AVHubertPretrainingTask, ) from .resnet import ResEncoder from .utils import compute_mask_indices from .decoder import TransformerDecoder from omegaconf import II logger = logging.getLogger(__name__) EXTRACTOR_MODE_CHOICES = ChoiceEnum(["default", "layer_norm"]) MASKING_DISTRIBUTION_CHOICES = ChoiceEnum( ["static", "uniform", "normal", "poisson"] ) # LAYER_TYPE_CHOICES = ChoiceEnum(["transformer", "conformer", "trf_adp"]) @dataclass class AVHubertConfig(FairseqDataclass): label_rate: int = II("task.label_rate") input_modality: str = II("task.input_modality") extractor_mode: EXTRACTOR_MODE_CHOICES = field( default="default", metadata={ "help": "mode for feature extractor. default has a single group " "norm with d groups in the first conv block, whereas layer_norm " "has layer norms in every block (meant to use with normalize=True)" }, ) encoder_layers: int = field( default=12, metadata={"help": "num encoder layers in the transformer"} ) encoder_embed_dim: int = field( default=768, metadata={"help": "encoder embedding dimension"} ) encoder_ffn_embed_dim: int = field( default=3072, metadata={"help": "encoder embedding dimension for FFN"} ) encoder_attention_heads: int = field( default=12, metadata={"help": "num encoder attention heads"} ) activation_fn: ChoiceEnum(utils.get_available_activation_fns()) = field( default="gelu", metadata={"help": "activation function to use"} ) # dropouts dropout: float = field( default=0.1, metadata={"help": "dropout probability for the transformer"}, ) attention_dropout: float = field( default=0.1, metadata={"help": "dropout probability for attention weights"}, ) activation_dropout: float = field( default=0.0, metadata={"help": "dropout probability after activation in FFN"}, ) encoder_layerdrop: float = field( default=0.0, metadata={"help": "probability of dropping a tarnsformer layer"}, ) dropout_input: float = field( default=0.0, metadata={"help": "dropout to apply to the input (after feat extr)"}, ) dropout_features: float = field( default=0.0, metadata={ "help": "dropout to apply to the features (after feat extr)" }, ) final_dim: int = field( default=0, metadata={ "help": "project final representations and targets to this many " "dimensions. set to encoder_embed_dim is <= 0" }, ) untie_final_proj: bool = field( default=False, metadata={"help": "use separate projection for each target"}, ) layer_norm_first: bool = field( default=False, metadata={"help": "apply layernorm first in the transformer"}, ) conv_feature_layers: str = field( default="[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2", metadata={ "help": "string describing convolutional feature extraction " "layers in form of a python list that contains " "[(dim, kernel_size, stride), ...]" }, ) conv_bias: bool = field( default=False, metadata={"help": "include bias in conv encoder"} ) logit_temp: float = field( default=0.1, metadata={"help": "temperature to divide logits by"} ) target_glu: bool = field( default=False, metadata={"help": "adds projection + glu to targets"} ) feature_grad_mult: float = field( default=1.0, metadata={"help": "multiply feature extractor var grads by this"}, ) # masking mask_length_audio: int = field(default=10, metadata={"help": "mask length"}) mask_prob_audio: float = field( default=0.65, metadata={"help": "probability of replacing a token with mask"}, ) mask_length_image: int = field(default=10, metadata={"help": "mask length"}) mask_prob_image: float = field( default=0.65, metadata={"help": "probability of replacing a token with mask"}, ) mask_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length"} ) mask_other: float = field( default=0, metadata={ "help": "secondary mask argument " "(used for more complex distributions), " "see help in compute_mask_indicesh" }, ) no_mask_overlap: bool = field( default=False, metadata={"help": "whether to allow masks to overlap"} ) mask_min_space: int = field( default=1, metadata={ "help": "min space between spans (if no overlap is enabled)" }, ) # channel masking mask_channel_length: int = field( default=10, metadata={"help": "length of the mask for features (channels)"}, ) mask_channel_prob: float = field( default=0.0, metadata={"help": "probability of replacing a feature with 0"}, ) mask_channel_selection: MASKING_DISTRIBUTION_CHOICES = field( default="static", metadata={"help": "how to choose mask length for channel masking"}, ) mask_channel_other: float = field( default=0, metadata={ "help": "secondary mask argument " "(used for more complex distributions), " "see help in compute_mask_indicesh" }, ) no_mask_channel_overlap: bool = field( default=False, metadata={"help": "whether to allow channel masks to overlap"}, ) mask_channel_min_space: int = field( default=1, metadata={ "help": "min space between spans (if no overlap is enabled)" }, ) # positional embeddings conv_pos: int = field( default=128, metadata={ "help": "number of filters for convolutional positional embeddings" }, ) conv_pos_groups: int = field( default=16, metadata={ "help": "number of groups for convolutional positional embedding" }, ) latent_temp: Tuple[float, float, float] = field( default=(2, 0.5, 0.999995), metadata={"help": "legacy (to be removed)"}, ) # loss computation skip_masked: bool = field( default=False, metadata={"help": "skip computing losses over masked frames"}, ) skip_nomask: bool = field( default=False, metadata={"help": "skip computing losses over unmasked frames"}, ) resnet_relu_type: str = field(default='prelu', metadata={"help": 'relu type for resnet'}) resnet_weights: Optional[str] = field(default=None, metadata={"help": 'resnet weights'}) sim_type: str = field(default='cosine', metadata={"help": 'similarity type'}) sub_encoder_layers: int = field(default=0, metadata={'help': 'number of transformer layers for single modality'}) audio_feat_dim: int = field(default=-1, metadata={'help': 'audio feature dimension'}) modality_dropout: float = field(default=0, metadata={'help': 'drop one modality'}) audio_dropout: float = field(default=0, metadata={'help': 'drop audio feature'}) modality_fuse: str = field(default='concat', metadata={'help': 'fusing two modalities: add,concat'}) selection_type : str = field(default='same_other_seq', metadata={'help': 'type of selectig images, same_other_seq: replace masked span with span from another sequence, same_seq: repace masked span with span of the same sequence'}) masking_type : str = field(default='input', metadata={'help': 'input or feature masking'}) decoder_embed_dim: int = field( default=768, metadata={"help": "decoder embedding dimension"} ) decoder_ffn_embed_dim: int = field( default=3072, metadata={"help": "decoder embedding dimension for FFN"} ) decoder_layers: int = field( default=6, metadata={"help": "num of decoder layers"} ) decoder_layerdrop: float = field( default=0.0, metadata={"help": "decoder layerdrop chance"} ) decoder_attention_heads: int = field( default=4, metadata={"help": "num decoder attention heads"} ) decoder_learned_pos: bool = field( default=False, metadata={"help": "use learned positional embeddings in the decoder"}, ) decoder_normalize_before: bool = field( default=False, metadata={"help": "apply layernorm before each decoder block"}, ) no_token_positional_embeddings: bool = field( default=False, metadata={ "help": "if set, disables positional embeddings " "(outside self attention)" }, ) decoder_dropout: float = field( default=0.1, metadata={"help": "dropout probability in the decoder"} ) decoder_attention_dropout: float = field( default=0.1, metadata={ "help": "dropout probability for attention weights " "inside the decoder" }, ) decoder_activation_dropout: float = field( default=0.0, metadata={ "help": "dropout probability after activation in FFN " "inside the decoder" }, ) max_target_positions: int = field( default=2048, metadata={"help": "max target positions"} ) share_decoder_input_output_embed: bool = field( default=False, metadata={"help": "share decoder input and output embeddings"}, ) no_scale_embedding: bool = field(default=True, metadata={'help': 'scale embedding'}) # # new fairseq # required_seq_len_multiple: int = field( # default=1, # metadata={ # "help": "pad the input to encoder such that the sequence length is divisible by multiple" # }, # ) # layer_type: LAYER_TYPE_CHOICES = field( # default="transformer", metadata={"help": "layer type in encoder"} # ) class SubModel(nn.Module): def __init__(self, resnet=None, input_dim=None, cfg=None): super().__init__() self.resnet = resnet self.proj = nn.Linear(input_dim, cfg.encoder_embed_dim) self.encoder = TransformerEncoder(cfg) if cfg.encoder_layers > 0 else None def forward(self, x): #torch.Size([1, 1, 106, 112, 112]) if self.resnet is not None: x = self.resnet(x) #torch.Size([1, 512, 106]) #torch.Size([12, 26, 314]) x = self.proj(x.transpose(1, 2)) #audio是 Linear(in_features=104, out_features=1024, bias=True) 太他妈扯了吧 if self.encoder is not None: x = self.encoder(x)[0].transpose(1, 2) else: # x = x.transpose(1, 2) return x #torch.Size([1, 1024, 106]) @register_model("av_hubert", dataclass=AVHubertConfig) class AVHubertModel(BaseFairseqModel): def __init__( self, cfg: AVHubertConfig, task_cfg: AVHubertPretrainingConfig, dictionaries: List[Dictionary], **kwargs ) -> None: super().__init__() logger.info(f"HubertModel Config: {cfg}") feature_ds_rate = 1 self.feat2tar_ratio = cfg.label_rate * feature_ds_rate / task_cfg.sample_rate sub_cfg = deepcopy(cfg) sub_cfg.encoder_layers = sub_cfg.sub_encoder_layers resnet = ResEncoder(relu_type=cfg.resnet_relu_type, weights=cfg.resnet_weights) self.feature_extractor_audio = SubModel(resnet=None, input_dim=cfg.audio_feat_dim, cfg=sub_cfg) self.feature_extractor_video = SubModel(resnet=resnet, input_dim=resnet.backend_out, cfg=sub_cfg) self.modality_dropout, self.audio_dropout = cfg.modality_dropout, cfg.audio_dropout self.modality_fuse = cfg.modality_fuse self.encoder_embed_dim = cfg.encoder_embed_dim if self.modality_fuse == 'concat': self.embed = cfg.encoder_embed_dim * 2 elif self.modality_fuse == 'add': self.embed = cfg.encoder_embed_dim self.post_extract_proj = ( nn.Linear(self.embed, cfg.encoder_embed_dim) if self.embed != cfg.encoder_embed_dim else None ) self.mask_prob_image, self.mask_prob_audio = cfg.mask_prob_image, cfg.mask_prob_audio self.mask_selection = cfg.mask_selection self.mask_other = cfg.mask_other self.mask_length_image, self.mask_length_audio = cfg.mask_length_image, cfg.mask_length_audio self.no_mask_overlap = cfg.no_mask_overlap self.mask_min_space = cfg.mask_min_space self.mask_channel_prob = cfg.mask_channel_prob self.mask_channel_selection = cfg.mask_channel_selection self.mask_channel_other = cfg.mask_channel_other self.mask_channel_length = cfg.mask_channel_length self.no_mask_channel_overlap = cfg.no_mask_channel_overlap self.mask_channel_min_space = cfg.mask_channel_min_space self.dropout_input = nn.Dropout(cfg.dropout_input) self.dropout_features = nn.Dropout(cfg.dropout_features) self.feature_grad_mult = cfg.feature_grad_mult self.logit_temp = cfg.logit_temp self.skip_masked = cfg.skip_masked self.skip_nomask = cfg.skip_nomask self.sim_type = cfg.sim_type self.selection_type = cfg.selection_type self.masking_type = cfg.masking_type final_dim = ( cfg.final_dim if cfg.final_dim > 0 else cfg.encoder_embed_dim ) self.mask_emb = nn.Parameter( torch.FloatTensor(cfg.audio_feat_dim).uniform_() if self.masking_type == 'input' else torch.FloatTensor(cfg.encoder_embed_dim).uniform_() ) self.encoder = TransformerEncoder(cfg) self.layer_norm = LayerNorm(self.embed) self.target_glu = None if cfg.target_glu: self.target_glu = nn.Sequential( nn.Linear(final_dim, final_dim * 2), nn.GLU() ) self.untie_final_proj = cfg.untie_final_proj if self.untie_final_proj: self.final_proj = nn.Linear( cfg.encoder_embed_dim, final_dim * len(dictionaries) ) else: self.final_proj = nn.Linear(cfg.encoder_embed_dim, final_dim) # modules below are not needed during fine-tuning if any([d is None for d in dictionaries]): logger.info( "cannot find dictionary. assume will be used for fine-tuning" ) else: self.num_classes = [len(d) for d in dictionaries] self.label_embs_concat = nn.Parameter( torch.FloatTensor(sum(self.num_classes), final_dim) ) nn.init.uniform_(self.label_embs_concat) def upgrade_state_dict_named(self, state_dict, name): """Upgrade a (possibly old) state dict for new versions of fairseq.""" super().upgrade_state_dict_named(state_dict, name) return state_dict @classmethod def build_model(cls, cfg: AVHubertConfig, task: AVHubertPretrainingTask): """Build a new model instance.""" kwargs = {} model = AVHubertModel(cfg, task.cfg, task.dictionaries, **kwargs) return model def apply_input_mask(self, x, padding_mask, target_list): B, C, T = x.shape[:3] is_audio = True if len(x.shape) == 3 else False if is_audio: mask_prob, mask_length = self.mask_prob_audio, self.mask_length_audio else: mask_prob, mask_length = self.mask_prob_image, self.mask_length_image if mask_prob > 0: mask_indices, starts, ends, batch_indexes = compute_mask_indices( (B, T), padding_mask, mask_prob, mask_length, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, ) mask_indices_np = mask_indices mask_indices = torch.from_numpy(mask_indices).to(x.device) x = x.transpose(1, 2).contiguous() # [B, T, C, H, W] if B == 1: x[mask_indices] = 0 elif is_audio: x[mask_indices] = self.mask_emb elif self.selection_type == 'same_other_seq': perm = (torch.arange(B) + torch.randint(low=1, high=B, size=(1,))) % B x_perm = x[perm] x[mask_indices] = x_perm[mask_indices] elif self.selection_type == 'same_seq': batch_indexes_, other_indexes = [], [] for batch_index, start, end in zip(batch_indexes, starts, ends): length = end-start other_start = np.setdiff1d(np.arange(T), np.arange(max(0, start-length), end)) if len(other_start) > 0: other_start = np.random.choice(other_start, size=1) else: other_start = 0 other_end = other_start + length other_indexes.append(np.arange(other_start, other_end).clip(max=T-1)) batch_indexes_.append(np.zeros([length], dtype=np.int64)+batch_index) batch_indexes, other_indexes = np.concatenate(batch_indexes_), np.concatenate(other_indexes) x[mask_indices] = x[batch_indexes, other_indexes] x = x.transpose(1, 2).contiguous() else: mask_indices = None if self.mask_channel_prob > 0: logger.info(f"No mask channel prob for input masking") return x, mask_indices def apply_feature_mask(self, x, padding_mask, target_list): B, T, C = x.shape assert self.mask_prob_audio == self.mask_prob_image and self.mask_length_audio == self.mask_length_image, f"masking prob/length for image/audio be same for feature masking" mask_prob, mask_length = self.mask_prob_audio, self.mask_length_image if mask_prob > 0: mask_indices, _, _, _ = compute_mask_indices( (B, T), padding_mask, mask_prob, mask_length, self.mask_selection, self.mask_other, min_masks=2, no_overlap=self.no_mask_overlap, min_space=self.mask_min_space, ) mask_indices = torch.from_numpy(mask_indices).to(x.device) x[mask_indices] = self.mask_emb else: mask_indices = None if self.mask_channel_prob > 0: mask_channel_indices, _, _, _ = compute_mask_indices( (B, C), None, self.mask_channel_prob, self.mask_channel_length, self.mask_channel_selection, self.mask_channel_other, no_overlap=self.no_mask_channel_overlap, min_space=self.mask_channel_min_space, ) mask_channel_indices = ( torch.from_numpy(mask_channel_indices) .to(x.device) .unsqueeze(1) .expand(-1, T, -1) ) x[mask_channel_indices] = 0 return x, mask_indices def forward_features(self, source: torch.Tensor, modality: str) -> torch.Tensor: extractor = eval(f"self.feature_extractor_{modality}") if self.feature_grad_mult > 0: features = extractor(source) if self.feature_grad_mult != 1.0: features = GradMultiply.apply(features, self.feature_grad_mult) else: with torch.no_grad(): features = extractor(source) return features def forward_targets( self, features: torch.Tensor, mask_indices: torch.Tensor, target_list: List[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: # Trim features to ensure labels exist and then get aligned labels feat_tsz = features.size(2) targ_tsz = min([t.size(1) for t in target_list]) if self.feat2tar_ratio * feat_tsz > targ_tsz: feat_tsz = int(targ_tsz / self.feat2tar_ratio) features = features[..., :feat_tsz] if mask_indices is not None: mask_indices = mask_indices[..., :feat_tsz] target_inds = torch.arange(feat_tsz).float() * self.feat2tar_ratio target_list = [t[:, target_inds.long()] for t in target_list] return features, mask_indices, target_list def forward_padding_mask( self, features: torch.Tensor, padding_mask: torch.Tensor, ) -> torch.Tensor: extra = padding_mask.size(1) % features.size(1) if extra > 0: padding_mask = padding_mask[:, :-extra] padding_mask = padding_mask.view( padding_mask.size(0), features.size(1), -1 ) padding_mask = padding_mask.all(-1) return padding_mask def compute_logits(self, feats, emb_mat): # feats: [B, T, F], emb_mat: [V, F] if self.sim_type == 'dot': logits = torch.matmul(feats, emb_mat.transpose(0, 1)) elif self.sim_type == 'cosine': batch_size, timesteps, emb_dim = feats.size() feats_ = feats.view(-1, emb_dim) nom = (feats_.unsqueeze(dim=1) * emb_mat.unsqueeze(dim=0)).sum(dim=-1) # [B*T, V] denom = (feats_**2).sum(dim=-1).sqrt().unsqueeze(dim=1) * (emb_mat**2).sum(dim=-1).sqrt().unsqueeze(dim=0) # [B*T, V] logits = (nom/denom.clamp(min=1e-6)).view(batch_size, timesteps, -1) else: raise NotImplementedError logits = logits / self.logit_temp return logits def forward( self, source: torch.Tensor, target_list: Optional[List[torch.Tensor]] = None, padding_mask: Optional[torch.Tensor] = None, mask: bool = True, features_only: bool = False, output_layer: Optional[int] = None ) -> Dict[str, torch.Tensor]: """output layer is 1-based""" src_audio, src_video = source['audio'], source['video'] if mask and self.masking_type == 'input': src_video, mask_indices_video = self.apply_input_mask(src_video, padding_mask, target_list) src_audio, mask_indices_audio = self.apply_input_mask(src_audio, padding_mask, target_list) mask_indices = torch.logical_or(mask_indices_audio, mask_indices_video) else: src_audio, src_video, mask_indices = src_audio, src_video, None features_audio = self.forward_features(src_audio, modality='audio') # features: [B, F, T] features_video = self.forward_features(src_video, modality='video') modality_drop_prob, audio_drop_prob = np.random.random(), np.random.random() if self.training: if modality_drop_prob < self.modality_dropout: if audio_drop_prob < self.audio_dropout: features_audio = 0 * features_audio else: features_video = 0 * features_video if self.modality_fuse == 'concat': features = torch.cat([features_audio, features_video], dim=1) elif self.modality_fuse == 'add': features = features_audio + features_video if target_list is not None: features, mask_indices, target_list = self.forward_targets(features, mask_indices, target_list) features_pen = features.float().pow(2).mean() features = features.transpose(1, 2) features = self.layer_norm(features) if padding_mask is not None: padding_mask = self.forward_padding_mask(features, padding_mask) if self.post_extract_proj is not None: features = self.post_extract_proj(features) features = self.dropout_input(features) if self.masking_type == 'feature' and mask: x, mask_indices = self.apply_feature_mask(features, padding_mask, target_list) else: x = features # feature: (B, T, D), float # target: (B, T), long # x: (B, T, D), float # padding_mask: (B, T), bool # mask_indices: (B, T), bool x, _ = self.encoder( x, padding_mask=padding_mask, layer=None if output_layer is None else output_layer - 1 ) if features_only: return {"x": x, "padding_mask": padding_mask, "features": features} label_embs_list = self.label_embs_concat.split(self.num_classes, 0) proj_x = self.final_proj(x) if self.untie_final_proj: proj_x_list = proj_x.chunk(len(self.num_classes), dim=-1) else: proj_x_list = [proj_x for _ in self.num_classes] logit_list = [self.compute_logits(proj, emb).view(-1, num_class) for proj, emb, num_class in zip(proj_x_list, label_embs_list, self.num_classes)] # [[B*T, V]] mask, unmask = torch.logical_and(mask_indices, ~padding_mask).view(-1), torch.logical_and(~mask_indices, ~padding_mask).view(-1) # [B*T] logit_m_list, logit_u_list = [logit[mask] for logit in logit_list], [logit[unmask] for logit in logit_list] target_m_list, target_u_list = [target.view(-1)[mask].long() for target in target_list], [target.view(-1)[unmask].long() for target in target_list] result = { "logit_m_list": logit_m_list, "logit_u_list": logit_u_list, "target_m_list": target_m_list, "target_u_list": target_u_list, "padding_mask": padding_mask, "features_pen": features_pen, } return result def extract_features( self, source: torch.Tensor, padding_mask: Optional[torch.Tensor] = None, mask: bool = False, ret_conv: bool = False, output_layer: Optional[int] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: res = self.forward( source, padding_mask=padding_mask, mask=mask, features_only=True, output_layer=output_layer, ) feature = res["features"] if ret_conv else res["x"] return feature, res["padding_mask"] def extract_finetune(self, source, padding_mask=None, mask=False, ret_conv=False, output_layer=None): src_audio, src_video = source['audio'], source['video'] #torch.Size([1, 1, 106, 112, 112]) if mask and self.masking_type == 'input': src_video, mask_indices_video = self.apply_input_mask(src_video, padding_mask, target_list=None) src_audio, mask_indices_audio = self.apply_input_mask(src_audio, padding_mask, target_list=None) mask_indices = torch.logical_or(mask_indices_audio, mask_indices_video) # mask_indices not used in fine-tuning else: # src_audio, src_video, mask_indices = src_audio, src_video, None if src_audio is not None and src_video is None: features_audio = self.forward_features(src_audio, modality='audio') # features: [B, F, T] features_video = features_audio.new_zeros(features_audio.size(0), self.encoder_embed_dim, features_audio.size(-1)) elif src_audio is None and src_video is not None: features_video = self.forward_features(src_video, modality='video') features_audio = features_video.new_zeros(features_video.size(0), self.encoder_embed_dim, features_video.size(-1)) #全0! elif src_audio is not None and src_video is not None: features_video = self.forward_features(src_video, modality='video') #torch.Size([1, 1024, 106]) #scr torch.Size([12, 1, 314, 88, 88]) features_audio = self.forward_features(src_audio, modality='audio') # features: [B, F, T] #torch.Size([12, 26, 314]) if self.modality_fuse == 'concat': # features = torch.cat([features_audio, features_video], dim=1) #torch.Size([1, 2048, 106]) elif self.modality_fuse == 'add': features = features_audio + features_video features_pen = features.float().pow(2).mean() features = features.transpose(1, 2) features = self.layer_norm(features) unmasked_features = features.clone() if padding_mask is not None: #features:torch.Size([1, 106, 2048]) padding_mask = self.forward_padding_mask(features, padding_mask) #torch.Size([4, 154]) if self.post_extract_proj is not None: features = self.post_extract_proj(features) #torch.Size([1, 106, 1024]) features = self.dropout_input(features) unmasked_features = self.dropout_features(unmasked_features) x = features mask_indices = None # feature: (B, T, D), float # target: (B, T), long # x: (B, T, D), float # padding_mask: (B, T), bool # mask_indices: (B, T), bool x, _ = self.encoder( x, padding_mask=padding_mask, layer=None if output_layer is None else output_layer - 1 ) return x, padding_mask #torch.Size([1, 106, 1024]), None def get_extra_losses(self, net_output): extra_losses = [] names = [] if "features_pen" in net_output: extra_losses.append(net_output["features_pen"]) names.append("features_pen") return extra_losses, names def remove_pretraining_modules(self): self.target_glu = None self.final_proj = None def get_logits(self, net_output, is_masked=True): raise NotImplementedError def get_targets(self, net_output, is_masked=True): raise NotImplementedError def compute_nce(self, x, pos, negs): neg_is_pos = (pos == negs).all(-1) pos = pos.unsqueeze(0) targets = torch.cat([pos, negs], dim=0) logits = torch.cosine_similarity( x.float(), targets.float(), dim=-1 ).type_as(x) logits /= self.logit_temp if neg_is_pos.any(): logits[1:][neg_is_pos] = float("-inf") logits = logits.transpose(0, 1) # (num_x, num_cls+1) return logits