xcczach's picture
Upload 73 files
35c1cfd verified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
import random
from itertools import islice
import numpy as np
import torch
class LengthBasedBatchSampler(torch.utils.data.BatchSampler):
def __init__(self, data_source, batch_size: int, drop_last: bool, shuffle: bool=True) -> None:
if isinstance(next(iter(data_source)), dict):
first_key = next(iter(next(iter(data_source)).keys()))
self.lengths = [len(d[first_key]) for d in data_source]
else:
self.lengths = [len(d) for d in data_source]
self.batch_size = batch_size
self.drop_last = drop_last
self.shuffle = shuffle
def __iter__(self):
ids = np.argsort(self.lengths)
if self.drop_last:
ids = ids[:len(ids) // self.batch_size * self.batch_size]
batches = [ids[i:i+self.batch_size] for i in range(0, len(ids), self.batch_size)]
if self.shuffle:
random.shuffle(batches)
for b in batches:
yield b
def __len__(self):
if self.drop_last:
return len(self.lengths) // self.batch_size
else:
return len(self.lengths) // self.batch_size + (len(self.lengths) % self.batch_size > 0)
class DistributedLengthBasedBatchSampler(torch.utils.data.BatchSampler):
def __init__(self, data_source, batch_size: int, num_replicas: int, rank: int, shuffle: bool = True, seed: int = 0) -> None:
random.seed(seed)
self.batch_sampler = LengthBasedBatchSampler(
data_source, batch_size=batch_size, drop_last=True, shuffle=shuffle
)
self.num_replicas = num_replicas
self.rank = rank
def __iter__(self):
max_length = len(self.batch_sampler) // self.num_replicas * self.num_replicas
return islice(self.batch_sampler, self.rank, max_length, self.num_replicas)
def __len__(self):
return len(self.batch_sampler) // self.num_replicas