mini-omni-s2s / utils /trick_utils.py
xcczach's picture
Upload 73 files
35c1cfd verified
raw
history blame
1.58 kB
import torch
import os
import logging
logger = logging.getLogger(__name__)
def partial_freeze_weights(model, original_vocabsize, total_vocabsize):
if int(os.environ.get("RANK", "0")) == 0:
logger.info("Only training partial embedding layer")
trainable_range = (original_vocabsize, total_vocabsize)
# Define a hook to zero out the gradient for weights outside the trainable range during the backward pass
def zero_out_gradient(grad):
grad[:trainable_range[0], :] = 0
grad[trainable_range[1] + 1:, :] = 0
return grad
# Freeze all layers first
for param in model.parameters():
param.requires_grad = False
# Assuming the output layer is `lm_head`
for param in model.llm.lm_head.parameters():
# Compute the standard deviation for He initialization
std_dev = (2.0 / param.size(1)) ** 0.5
# Initialize the specific rows with He initialization
param[original_vocabsize:total_vocabsize] = (
torch.randn((trainable_range[1] - trainable_range[0], param.size(1))) * std_dev
)
param.requires_grad = True
# Register the hook on the weight tensor
param.register_hook(zero_out_gradient)
def train_embedding_layer_only(model):
if int(os.environ.get("RANK", "0")) == 0:
logger.info("Only training embedding layer")
for param in model.parameters():
param.requires_grad = False
for param in model.llm.lm_head.parameters():
param.requires_grad = True