Spaces:
Runtime error
Runtime error
import torch | |
import os | |
import logging | |
logger = logging.getLogger(__name__) | |
def partial_freeze_weights(model, original_vocabsize, total_vocabsize): | |
if int(os.environ.get("RANK", "0")) == 0: | |
logger.info("Only training partial embedding layer") | |
trainable_range = (original_vocabsize, total_vocabsize) | |
# Define a hook to zero out the gradient for weights outside the trainable range during the backward pass | |
def zero_out_gradient(grad): | |
grad[:trainable_range[0], :] = 0 | |
grad[trainable_range[1] + 1:, :] = 0 | |
return grad | |
# Freeze all layers first | |
for param in model.parameters(): | |
param.requires_grad = False | |
# Assuming the output layer is `lm_head` | |
for param in model.llm.lm_head.parameters(): | |
# Compute the standard deviation for He initialization | |
std_dev = (2.0 / param.size(1)) ** 0.5 | |
# Initialize the specific rows with He initialization | |
param[original_vocabsize:total_vocabsize] = ( | |
torch.randn((trainable_range[1] - trainable_range[0], param.size(1))) * std_dev | |
) | |
param.requires_grad = True | |
# Register the hook on the weight tensor | |
param.register_hook(zero_out_gradient) | |
def train_embedding_layer_only(model): | |
if int(os.environ.get("RANK", "0")) == 0: | |
logger.info("Only training embedding layer") | |
for param in model.parameters(): | |
param.requires_grad = False | |
for param in model.llm.lm_head.parameters(): | |
param.requires_grad = True |