mini-omni-s2s / slam_llm /utils /compute_ppl.py
xcczach's picture
Upload 73 files
35c1cfd verified
raw
history blame
1.48 kB
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from tqdm import tqdm
import json
# MODEL_PATH = "/nfs/maziyang.mzy/models/vicuna-7b-v1.5"
MODEL_PATH = "/nfs/zhifu.gzf/ckpt/Llama-2-7b-hf"
# MODEL_PATH = "/nfs/maziyang.mzy/models/Llama-2-7b-chat-hf"
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForCausalLM.from_pretrained(MODEL_PATH)
device = 'cuda:7'
model.to(device)
model.eval()
corpus_path = "/nfs/maziyang.mzy/data/librispeech/librispeech_test_clean_filtered.jsonl"
corpus = []
with open(corpus_path, encoding='utf-8') as fin:
for line in fin:
data_dict = json.loads(line.strip())
corpus.append(data_dict.get("target", None))
cumulative_log_likelihood = 0
total_tokens = 0
for sentence in tqdm(corpus):
inputs = tokenizer(sentence.strip().lower(), return_tensors="pt").to(device)
input_ids = inputs["input_ids"]
# input_len = input_ids.size(1)
input_len = len(sentence.split(" "))
total_tokens += input_len
with torch.no_grad():
outputs = model(**inputs, labels=input_ids)
log_likelihood = outputs.loss * input_len
cumulative_log_likelihood += log_likelihood.item()
average_log_likelihood = cumulative_log_likelihood / total_tokens
corpus_ppl = torch.exp(torch.tensor(average_log_likelihood)).item()
print(f"Model: {MODEL_PATH}")
print(f"Corpus: {corpus_path}")
print(f"Corpus Perplexity: {corpus_ppl}")