mini-omni-s2s / slam_llm /models /avhubert /hubert_pretraining.py
xcczach's picture
Upload 73 files
35c1cfd verified
raw
history blame
16.3 kB
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import logging
import os, glob
import sys
from typing import Dict, List, Optional, Tuple
import numpy as np
from dataclasses import dataclass, field
from fairseq import metrics, search
from fairseq.data import Dictionary, encoders
from fairseq.dataclass.configs import FairseqDataclass
from fairseq.tasks import register_task
from fairseq.tasks.fairseq_task import FairseqTask
from omegaconf import MISSING, II
import numpy as np
from argparse import Namespace
DBG=True if len(sys.argv) == 1 else False
if DBG:
from hubert_dataset import AVHubertDataset
from sequence_generator import SequenceGenerator
else:
from .hubert_dataset import AVHubertDataset
from .sequence_generator import SequenceGenerator
logger = logging.getLogger(__name__)
class LabelEncoder(object):
def __init__(self, dictionary: Dictionary) -> None:
self.dictionary = dictionary
def __call__(self, label: str) -> List[str]:
return self.dictionary.encode_line(
label, append_eos=False, add_if_not_exist=False,
)
class LabelEncoderS2SToken(object):
def __init__(self, dictionary: Dictionary, bpe_tokenizer) -> None:
self.bpe_tokenizer = bpe_tokenizer
self.dictionary = dictionary
def __call__(self, label: str) -> List[str]:
label = self.bpe_tokenizer.encode(label.lower())
return self.dictionary.encode_line(
label, append_eos=True, add_if_not_exist=False,
).long()
def decode(self, tok, symbols_ignore=None):
tok = self.dictionary.string(tok, extra_symbols_to_ignore=symbols_ignore)
if self.bpe_tokenizer:
tok = self.bpe_tokenizer.decode(tok)
return tok
@dataclass
class AVHubertPretrainingConfig(FairseqDataclass):
input_modality: str = II("task.input_modality") #??
data: str = field(
default=MISSING, metadata={"help": "path to data directory"}
)
labels: List[str] = field(
default_factory=lambda: ["ltr"],
metadata={
"help": (
"extension of the label files to load, frame-level labels for"
" pre-training, and sequence-level label for fine-tuning"
)
},
)
label_dir: Optional[str] = field(
default=None,
metadata={
"help": "if set, looks for labels in this directory instead",
},
)
label_rate: int = field(
default=-1,
metadata={"help": "label frame rate. -1 for sequence label"},
)
sample_rate: int = field(
default=16_000,
metadata={
"help": "target sample rate. audio files will be up/down "
"sampled to this rate"
},
)
normalize: bool = field(
default=False,
metadata={
"help": "if set, normalizes input to have 0 mean and unit variance"
},
)
enable_padding: bool = field(
default=False,
metadata={"help": "pad shorter samples instead of cropping"},
)
max_sample_size: Optional[int] = field(
default=None,
metadata={"help": "max sample size to keep in training"},
)
min_sample_size: Optional[int] = field(
default=None,
metadata={"help": "min sample size to keep in training"},
)
max_trim_sample_size: Optional[int] = field(
default=II("task.max_sample_size"),
metadata={"help": "max sample size to trim to for batching"},
)
single_target: Optional[bool] = field(
default=False,
metadata={
"help": "if set, AddTargetDatasets outputs same keys "
"as AddTargetDataset"
},
)
random_crop: Optional[bool] = field(
default=True,
metadata={"help": "always crop from the beginning if false"},
)
pad_audio: Optional[bool] = field(
default=False,
metadata={"help": "pad audio to the longest one in the batch if true"},
)
pdb: Optional[bool] = field(
default=False,
metadata={"help": "pdb"},
)
stack_order_audio: int = field(
default=1,
metadata={"help": "concatenate n consecutive audio frames for one step"},
)
skip_verify: Optional[bool] = field(
default=False,
metadata={"help": "skip verifying label-audio alignment"},
)
image_aug: bool = field(default=False, metadata={'help': 'image data augmentation'})
image_crop_size: int = field(
default=88, metadata={"help": "image ROI size"})
image_mean: float = field(
default=0.421, metadata={"help": "image mean"})
image_std: float = field(
default=0.165, metadata={"help": "image std"})
modalities: Optional[List[str]] = field(default_factory=lambda: ["audio", "video"], metadata={'help': 'modalities to load'})
is_s2s: bool=field(default=False, metadata={'help': 'seq2seq fine-tuning only'})
tokenizer_bpe_name: Optional[str] = field(default=None, metadata={'help': 'tokenizer model name'})
tokenizer_bpe_model: Optional[str] = field(default=None, metadata={'help': 'tokenizer model path'})
noise_wav: Optional[str] = field(default=None, metadata={'help': 'manifest of noise wav files (one wav file path per line)'})
noise_prob: float = field(default=0, metadata={'help': 'noise probability'})
noise_snr: Optional[str] = field(default='0', metadata={'help': 'noise SNR in audio'})
noise_num: int = field(default=1, metadata={'help': 'number of noise wav files to mix'})
fine_tuning: bool = field(default=False, metadata={"help": "set to true if fine-tuning AV-Hubert"})
@register_task("av_hubert_pretraining", dataclass=AVHubertPretrainingConfig)
class AVHubertPretrainingTask(FairseqTask):
cfg: AVHubertPretrainingConfig
def __init__(
self,
cfg: AVHubertPretrainingConfig,
) -> None:
super().__init__(cfg)
logger.info(f"current directory is {os.getcwd()}")
logger.info(f"AVHubertPretrainingTask Config {cfg}")
self.fine_tuning = cfg.fine_tuning
if cfg.fine_tuning:
self.state.add_factory("target_dictionary", self.load_dictionaries)
if cfg.is_s2s:
self.state.add_factory("s2s_tokenizer", self.load_tokenizer)
else:
self.state.add_factory("dictionaries", self.load_dictionaries)
self.blank_symbol = "<s>"
@property
def source_dictionary(self) -> Optional[Dictionary]:
return None # self._source_dictionary
@property
def target_dictionary(self) -> Optional[Dictionary]:
return self.state.target_dictionary # self._target_dictionary
@property
def dictionaries(self) -> List[Dictionary]:
return self.state.dictionaries
def load_dictionaries(self):
label_dir = self.cfg.data if self.cfg.label_dir is None else self.cfg.label_dir
dictionaries = [
Dictionary.load(f"{label_dir}/dict.{label}.txt")
for label in self.cfg.labels
]
return dictionaries[0] if self.cfg.fine_tuning else dictionaries
def load_tokenizer(self):
bpe_args = Namespace(**{'bpe': self.cfg.tokenizer_bpe_name, f"{self.cfg.tokenizer_bpe_name}_model": self.cfg.tokenizer_bpe_model})
bpe_tokenizer = encoders.build_bpe(bpe_args)
return bpe_tokenizer
@property
def s2s_tokenizer(self):
return self.state.s2s_tokenizer
@classmethod
def setup_task(
cls, cfg: AVHubertPretrainingConfig, **kwargs
) -> "AVHubertPretrainingTask":
if cfg.pdb:
import pdb
pdb.set_trace()
return cls(cfg)
def get_label_dir(self) -> str:
if self.cfg.label_dir is None:
return self.cfg.data
return self.cfg.label_dir
def load_dataset(self, split: str, **kwargs) -> None:
manifest = f"{self.cfg.data}/{split}.tsv"
dictionaries = [self.target_dictionary] if self.fine_tuning else self.dictionaries
pad_list = [dictionary.pad() for dictionary in dictionaries]
eos_list = [dictionary.eos() for dictionary in dictionaries]
if not self.cfg.is_s2s:
procs = [LabelEncoder(dictionary) for dictionary in dictionaries]
else:
logger.info(f"Using tokenizer")
bpe_tokenizer = self.s2s_tokenizer
procs = [LabelEncoderS2SToken(dictionary, bpe_tokenizer) for dictionary in dictionaries]
paths = [
f"{self.get_label_dir()}/{split}.{l}" for l in self.cfg.labels
]
image_aug = self.cfg.image_aug if split == 'train' else False
noise_fn, noise_snr = f"{self.cfg.noise_wav}/{split}.tsv" if self.cfg.noise_wav is not None else None, eval(self.cfg.noise_snr)
noise_num = self.cfg.noise_num #
self.datasets[split] = AVHubertDataset(
manifest,
sample_rate=self.cfg.sample_rate,
label_paths=paths,
label_rates=self.cfg.label_rate,
pad_list=pad_list,
eos_list=eos_list,
label_processors=procs,
max_keep_sample_size=self.cfg.max_sample_size,
min_keep_sample_size=self.cfg.min_sample_size,
max_sample_size=self.cfg.max_trim_sample_size,
pad_audio=self.cfg.pad_audio,
normalize=self.cfg.normalize,
store_labels=False,
random_crop=self.cfg.random_crop,
single_target=self.cfg.single_target,
stack_order_audio=self.cfg.stack_order_audio,
skip_verify=self.cfg.skip_verify,
image_mean=self.cfg.image_mean,
image_std=self.cfg.image_std,
image_crop_size=self.cfg.image_crop_size,
image_aug=image_aug,
modalities=self.cfg.modalities,
is_s2s=self.cfg.is_s2s,
noise_fn=noise_fn,
noise_prob=self.cfg.noise_prob,
noise_snr=noise_snr,
noise_num=noise_num
)
def max_positions(self) -> Tuple[int, int]:
return (sys.maxsize, sys.maxsize)
def filter_indices_by_size(
self, indices: np.array, *args, **kwargs
) -> np.array:
return indices
def build_generator(
self, models, args, seq_gen_cls=None, extra_gen_cls_kwargs=None, prefix_allowed_tokens_fn=None,
):
"""
Build a :class:`~fairseq.SequenceGenerator` instance for this
task.
Args:
models (List[~fairseq.models.FairseqModel]): ensemble of models
args (fairseq.dataclass.configs.GenerationConfig):
configuration object (dataclass) for generation
extra_gen_cls_kwargs (Dict[str, Any]): extra options to pass
through to SequenceGenerator
prefix_allowed_tokens_fn (Callable[[int, torch.Tensor], List[int]]):
If provided, this function constrains the beam search to
allowed tokens only at each step. The provided function
should take 2 arguments: the batch ID (`batch_id: int`)
and a unidimensional tensor of token ids (`inputs_ids:
torch.Tensor`). It has to return a `List[int]` with the
allowed tokens for the next generation step conditioned
on the previously generated tokens (`inputs_ids`) and
the batch ID (`batch_id`). This argument is useful for
constrained generation conditioned on the prefix, as
described in "Autoregressive Entity Retrieval"
(https://arxiv.org/abs/2010.00904) and
https://github.com/facebookresearch/GENRE.
"""
if getattr(args, "score_reference", False):
from fairseq.sequence_scorer import SequenceScorer
return SequenceScorer(
self.target_dictionary,
compute_alignment=getattr(args, "print_alignment", False),
)
# Choose search strategy. Defaults to Beam Search.
sampling = getattr(args, "sampling", False)
sampling_topk = getattr(args, "sampling_topk", -1)
sampling_topp = getattr(args, "sampling_topp", -1.0)
diverse_beam_groups = getattr(args, "diverse_beam_groups", -1)
diverse_beam_strength = getattr(args, "diverse_beam_strength", 0.5)
match_source_len = getattr(args, "match_source_len", False)
diversity_rate = getattr(args, "diversity_rate", -1)
constrained = getattr(args, "constraints", False)
if prefix_allowed_tokens_fn is None:
prefix_allowed_tokens_fn = getattr(args, "prefix_allowed_tokens_fn", None)
if (
sum(
int(cond)
for cond in [
sampling,
diverse_beam_groups > 0,
match_source_len,
diversity_rate > 0,
]
)
> 1
):
raise ValueError("Provided Search parameters are mutually exclusive.")
assert sampling_topk < 0 or sampling, "--sampling-topk requires --sampling"
assert sampling_topp < 0 or sampling, "--sampling-topp requires --sampling"
if sampling:
search_strategy = search.Sampling(
self.target_dictionary, sampling_topk, sampling_topp
)
elif diverse_beam_groups > 0:
search_strategy = search.DiverseBeamSearch(
self.target_dictionary, diverse_beam_groups, diverse_beam_strength
)
elif match_source_len:
# this is useful for tagging applications where the output
# length should match the input length, so we hardcode the
# length constraints for simplicity
search_strategy = search.LengthConstrainedBeamSearch(
self.target_dictionary,
min_len_a=1,
min_len_b=0,
max_len_a=1,
max_len_b=0,
)
elif diversity_rate > -1:
search_strategy = search.DiverseSiblingsSearch(
self.target_dictionary, diversity_rate
)
elif constrained:
search_strategy = search.LexicallyConstrainedBeamSearch(
self.target_dictionary, args.constraints
)
elif prefix_allowed_tokens_fn:
search_strategy = search.PrefixConstrainedBeamSearch(
self.target_dictionary, prefix_allowed_tokens_fn
)
else:
search_strategy = search.BeamSearch(self.target_dictionary)
extra_gen_cls_kwargs = extra_gen_cls_kwargs or {}
if seq_gen_cls is None:
if getattr(args, "print_alignment", False):
seq_gen_cls = SequenceGeneratorWithAlignment
extra_gen_cls_kwargs["print_alignment"] = args.print_alignment
else:
seq_gen_cls = SequenceGenerator
return seq_gen_cls(
models,
self.target_dictionary,
beam_size=getattr(args, "beam", 5),
max_len_a=getattr(args, "max_len_a", 0),
max_len_b=getattr(args, "max_len_b", 200),
min_len=getattr(args, "min_len", 1),
normalize_scores=(not getattr(args, "unnormalized", False)),
len_penalty=getattr(args, "lenpen", 1),
unk_penalty=getattr(args, "unkpen", 0),
temperature=getattr(args, "temperature", 1.0),
match_source_len=getattr(args, "match_source_len", False),
no_repeat_ngram_size=getattr(args, "no_repeat_ngram_size", 0),
search_strategy=search_strategy,
**extra_gen_cls_kwargs,
)