Spaces:
Runtime error
Runtime error
File size: 20,021 Bytes
35c1cfd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 |
import torch
import os
import logging
import torch.nn.functional as F
from slam_llm.models.slam_model import (
slam_model,
setup_tokenizer,
setup_encoder,
setup_encoder_projector,
setup_llm,
)
from slam_llm.utils.train_utils import print_model_size
from typing import List, Optional
from slam_llm.utils.metric import compute_accuracy
from transformers import T5ForConditionalGeneration
from tqdm import tqdm
from utils.tts_adapter_utils import setup_tts_adapter
from utils.codec_utils import setup_codec
from utils.trick_utils import partial_freeze_weights, train_embedding_layer_only
from utils.snac_utils import layershift
logger = logging.getLogger(__name__)
def model_factory(train_config, model_config, ckpt_path, **kwargs):
# return necessary components for training
tokenizer = setup_tokenizer(train_config, model_config, **kwargs)
if train_config.task_type == "s2s" or train_config.task_type == "asr":
encoder = setup_encoder(train_config, model_config, **kwargs)
elif train_config.task_type == "tts":
encoder = None
else:
raise NotImplementedError
# llm
llm = setup_llm(train_config, model_config, **kwargs)
# projector
if encoder is not None:
encoder_projector = setup_encoder_projector(
train_config, model_config, **kwargs
)
else:
encoder_projector = None
codec_decoder = None
if model_config.codec_decode:
codec_decoder = setup_codec(train_config, model_config, **kwargs)
tts_adapter = None
if model_config.tts_adapter:
adapter_config = model_config.tts_adapter_config
tts_adapter = setup_tts_adapter(adapter_config, model_config, **kwargs)
model = slam_model_s2s(
encoder,
llm,
encoder_projector,
tokenizer,
tts_adapter,
codec_decoder,
train_config,
model_config,
**kwargs,
)
if ckpt_path is not None:
logger.info("loading other parts from: {}".format(ckpt_path))
ckpt_dict = torch.load(ckpt_path, map_location="cpu")
model.load_state_dict(ckpt_dict, strict=False)
if train_config.train_audio_embed_only:
partial_freeze_weights(model, model_config.vocab_config.padded_text_vocabsize, model_config.vocab_config.total_vocabsize)
if train_config.train_embed_only:
train_embedding_layer_only(model)
print_model_size(
model,
train_config,
(
int(os.environ["RANK"])
if train_config.enable_fsdp or train_config.enable_ddp
else 0
),
)
return model, tokenizer
class slam_model_s2s(slam_model):
def __init__(
self,
encoder,
llm,
encoder_projector,
tokenizer,
tts_adapter,
codec_decoder,
train_config,
model_config,
**kwargs,
):
super().__init__(
encoder,
llm,
encoder_projector,
tokenizer,
train_config,
model_config,
**kwargs,
)
# resize llm embedding layer
self.original_vocabsize = self.llm.lm_head.weight.size(0)
if self.model_config.vocab_config.total_vocabsize != self.original_vocabsize:
self.llm.resize_token_embeddings(self.model_config.vocab_config.total_vocabsize)
if int(os.environ.get("RANK", "0")) == 0:
logger.info("Resize llm embedding layer's vocab size to {}".format(self.model_config.vocab_config.total_vocabsize))
self.codec_decoder = codec_decoder
self.tts_adapter = tts_adapter
self.code_layer = self.model_config.vocab_config.code_layer
def forward(self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
):
audio_mel = kwargs.get("audio_mel", None)
audio_mel_post_mask = kwargs.get("audio_mel_post_mask", None) # 2x downsample for whisper
audio = kwargs.get("audio", None)
audio_mask = kwargs.get("audio_mask", None)
modality_mask = kwargs.get("modality_mask", None)
encoder_outs = None
if audio_mel is not None or audio is not None:
if self.train_config.freeze_encoder: # freeze encoder
self.encoder.eval()
if self.model_config.encoder_name == "whisper":
encoder_outs = self.encoder.extract_variable_length_features(audio_mel.permute(0, 2, 1)) # bs*seq*dim
if self.model_config.encoder_name == "wavlm":
encoder_outs = self.encoder.extract_features(audio, 1 - audio_mask) #(FIX:MZY): 1-audio_mask is needed for wavlm as the padding mask
if self.model_config.encoder_name == "hubert":
results = self.encoder(source = audio, padding_mask = 1-audio_mask)
if self.model_config.encoder_type == "pretrain":
encoder_outs, audio_mel_post_mask = results["x"], results["padding_mask"]
if self.model_config.encoder_type == "finetune":
encoder_outs, audio_mel_post_mask = results["encoder_out"], results["padding_mask"]
encoder_outs = encoder_outs.transpose(0, 1)
if self.encoder is None:
encoder_outs = audio_mel if audio_mel is not None else audio
if self.model_config.encoder_projector == "q-former":
encoder_outs = self.encoder_projector(encoder_outs, audio_mel_post_mask)
if self.model_config.encoder_projector == "linear":
encoder_outs = self.encoder_projector(encoder_outs)
if self.model_config.encoder_projector == "cov1d-linear":
encoder_outs = self.encoder_projector(encoder_outs)
if input_ids is not None:
input_ids[input_ids == -1] = 0 # [btz, 8, seq_length]
if isinstance(self.llm, T5ForConditionalGeneration):
inputs_embeds = self.llm.shared(input_ids)
else:
if hasattr(self.llm.model, "embed_tokens"):
inputs_embeds = self.llm.model.embed_tokens(input_ids) # [btz, 8, seq_length, emb_dim]
elif hasattr(self.llm.model.model, "embed_tokens"):
inputs_embeds = self.llm.model.model.embed_tokens(input_ids)
else:
inputs_embeds = self.llm.model.model.model.embed_tokens(input_ids)
if modality_mask is not None and encoder_outs is not None:
modality_mask = modality_mask.unsqueeze(1).repeat(1, self.code_layer, 1) # [btz, 8, seq_length]
modality_mask_start_indices = (modality_mask == True).float().argmax(dim=2)
modality_lengths = torch.clamp(modality_mask.sum(dim=2), max=encoder_outs.shape[1]).tolist()
encoder_outs_pad = torch.zeros_like(inputs_embeds)
for i in range(encoder_outs.shape[0]):
for j in range(self.code_layer):
start_idx = modality_mask_start_indices[i, j].item()
length = modality_lengths[i][j]
encoder_outs_pad[i, j, start_idx:start_idx+length] = encoder_outs[i, :length]
inputs_embeds[:, :self.code_layer, :, :] = encoder_outs_pad[:, :self.code_layer, :, :] + inputs_embeds[:, :self.code_layer, :, :] * (~modality_mask[:, :, :, None])
inputs_embeds = torch.mean(inputs_embeds, dim=1) # [btz, seq_length, emb_dim], average over the 8 layers
if kwargs.get("inference_mode", False):
return inputs_embeds, attention_mask
text_labels = labels[:,self.code_layer] if labels is not None else None
audio_labels = labels[:, :self.code_layer] if labels is not None else None
model_outputs = self.llm(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=text_labels) # here we use the text token layer as the target label
# parrallel generation
# TODO: add tts adapter forward
x_ori = model_outputs.logits
text_vocab_size = self.model_config.vocab_config.padded_text_vocabsize
audio_vocab_size = self.model_config.vocab_config.padded_audio_vocabsize
xt = x_ori[..., :text_vocab_size]
xa = []
for i in range(self.code_layer):
xa.append(x_ori[..., text_vocab_size + audio_vocab_size * i : text_vocab_size + audio_vocab_size * (i + 1)])
loss_recorder = []
total_loss, loss_recorder = self.compute_parallel_loss(xt, text_labels, xa, audio_labels)
model_outputs.loss = total_loss
text_acc = -1
audio_acc = [-1 for _ in range(self.code_layer)]
if self.metric:
with torch.no_grad():
preds = torch.argmax(xt, -1)
text_acc = compute_accuracy(preds.detach()[:, :-1], text_labels.detach()[:, 1:], ignore_label=-100)
preds_audio = [torch.argmax(xa[i], -1) for i in range(self.code_layer)]
audio_acc = [compute_accuracy(preds_audio[i].detach()[:, :-1], audio_labels[:, i, 1:], ignore_label=-100) for i in range(self.code_layer)]
# metrics = {"text_acc": text_acc, "audio_acc": audio_acc, "layer_loss": loss_recorder}
return model_outputs, text_acc, audio_acc, loss_recorder
def compute_parallel_loss(self, xt, text_labels, xa, audio_labels):
"""
Compute the parallel loss for text and audio layers.
"""
text_vocab_size = self.model_config.vocab_config.padded_text_vocabsize
audio_vocab_size = self.model_config.vocab_config.padded_audio_vocabsize
layer_loss = [0 for _ in range(self.code_layer+1) ]
if text_labels is not None:
# text_loss = F.cross_entropy(xt.reshape(-1, text_vocab_size), text_labels.reshape(-1), ignore_index=-100)
text_loss = F.cross_entropy(xt[:, :-1, :].reshape(-1, text_vocab_size), text_labels[:, 1:].reshape(-1), ignore_index=-100)
layer_loss[self.code_layer] = text_loss
else:
text_loss = 0
total_audio_loss = 0
single_audio_loss = 0
for i in range(self.code_layer):
if audio_labels[:,i] is not None:
# audio_loss += F.cross_entropy(xa[i].reshape(-1, audio_vocab_size), audio_labels[:,i].reshape(-1), ignore_index=-100)
single_audio_loss = F.cross_entropy(xa[i][:, :-1, :].reshape(-1, audio_vocab_size), audio_labels[:, i, 1:].reshape(-1), ignore_index=-100)
layer_loss[i] = single_audio_loss
total_audio_loss += single_audio_loss
total_loss = (text_loss + total_audio_loss) / (self.code_layer+1)
return total_loss, layer_loss
@torch.no_grad()
def generate(self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
):
kwargs["inference_mode"] = True
inputs_embeds, attention_mask = self.forward(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
labels=labels,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
**kwargs,
)
generated_ids = [[] for _ in range((self.code_layer+1))]
current_input_text = None
current_audio_tokens = [None for _ in range(self.code_layer)]
# input_pos = torch.arange(input_ids.size(-1), device=input_ids.device).unsqueeze(0)
past_key_values = None
text_vocab_size = self.model_config.vocab_config.padded_text_vocabsize
audio_vocab_size = self.model_config.vocab_config.padded_audio_vocabsize
max_new_tokens = kwargs.get("max_new_tokens", 360)
repetition_penalty = kwargs.get("repetition_penalty", 1.0)
decode_text_only = kwargs.get("decode_text_only", False)
pad_t = self.model_config.vocab_config.pad_t
pad_a = self.model_config.vocab_config.pad_a
eot = self.model_config.vocab_config.eot
eoa = self.model_config.vocab_config.eoa
text_end = False # Track whether text generation has ended
audio_end = False # Track whether audio generation has ended
# NOTE: currently, we only support greedy decoding and sampling for parallel generation, no beam search
for step in tqdm(range(max_new_tokens), desc="Generating"):
if current_input_text is not None:
audio_tokens = torch.cat([layershift(current_audio_tokens[i], i).unsqueeze(1) for i in range(self.code_layer)], dim=1)
combined_input_ids = torch.cat([audio_tokens, current_input_text.unsqueeze(1)], dim=1)
inputs_embeds = self.llm.model.embed_tokens(combined_input_ids)
inputs_embeds = torch.mean(inputs_embeds, dim=1).unsqueeze(1)
outputs = self.llm(
inputs_embeds=inputs_embeds, # [btz, seq_len / 1, emb_dim]
attention_mask=attention_mask, # single sample, no need for attention mask
past_key_values=past_key_values,
# position_ids=input_pos,
use_cache=True,
)
logits = outputs.logits
past_key_values = outputs.past_key_values # Update past_key_values for the next step
# Split logits into text and audio layers based on vocab size
xt_logits = logits[..., :text_vocab_size]
xa_logits = [logits[..., text_vocab_size + audio_vocab_size * i : text_vocab_size + audio_vocab_size * (i + 1)] for i in range(self.code_layer)]
# Apply repetition penalty to the logits
if repetition_penalty != 1.0:
xt_logits = self.repetition_penalty(xt_logits, generated_ids[self.code_layer], repetition_penalty)
for i in range(self.code_layer):
xa_logits[i] = self.repetition_penalty(xa_logits[i], generated_ids[i], repetition_penalty)
if not text_end:
next_token_text = self.sample_next_token(xt_logits[:, -1, :], **kwargs)
else:
next_token_text = torch.tensor([pad_t], device=input_ids.device)
next_tokens_audio = []
for i in range(self.code_layer):
if not audio_end and not decode_text_only:
next_token_audio = self.sample_next_token(xa_logits[i][:, -1, :], **kwargs)
else:
next_token_audio = torch.full((input_ids.size(0),), pad_a, device=input_ids.device)
next_tokens_audio.append(next_token_audio)
if next_tokens_audio[-1] == eoa or decode_text_only:
audio_end = True
if next_token_text == eot:
text_end = True
# Update input_ids for the next step
current_input_text = next_token_text
for i in range(self.code_layer):
current_audio_tokens[i] = next_tokens_audio[i]
# if input_pos.size(-1) > 1:
# input_pos = torch.tensor(input_pos.size(-1), device=input_ids.device).unsqueeze(0)
# else:
# input_pos = input_pos.add_(1)
attention_mask = torch.cat([attention_mask, torch.ones((input_ids.size(0), 1), device=input_ids.device)], dim=1)
if audio_end and text_end:
break
# Append generated tokens to the list
for i in range(self.code_layer):
generated_ids[i].append(next_tokens_audio[i].clone().tolist()[0]) # Audio layers
generated_ids[self.code_layer].append(next_token_text.clone().tolist()[0]) # Text layer
# Concatenate the generated tokens to form the complete sequence
text_tokens = generated_ids[-1]
generated_ids[-1] = text_tokens[: text_tokens.index(eot)] if eot in text_tokens else text_tokens
generated_ids = [torch.tensor(layer) for layer in generated_ids]
return generated_ids
@torch.no_grad()
def sample_next_token(self, logits, **kwargs):
"""
Generate the next token based on the model output logits.
Supports both greedy decoding, top-k sampling, and top-p (nucleus) sampling.
"""
do_sample = kwargs.get("do_sample", False)
temperature = kwargs.get("temperature", 1.0)
top_k = kwargs.get("top_k", 50)
top_p = kwargs.get("top_p", 1.0)
num_samples = kwargs.get("num_samples", 1)
# Adjust logits with temperature
logits = logits.squeeze(0)
logits = logits / temperature
# Top-k filtering
if top_k > 0:
top_k = min(top_k, logits.size(-1)) # Make sure top_k is within the vocab size
values, indices = torch.topk(logits, top_k)
logits[logits < values[..., [-1]]] = -float('Inf') # Filter tokens not in top_k
# Top-p filtering (nucleus sampling)
if top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices[sorted_indices_to_remove]
logits[indices_to_remove] = -float('Inf')
if do_sample:
# Perform sampling
return torch.multinomial(F.softmax(logits, dim=-1), num_samples=num_samples)
else:
# Greedy decoding (argmax)
return torch.argmax(logits, dim=-1, keepdim=True)
def repetition_penalty(self, logits, generated_ids, repetition_penalty):
"""
Apply repetition penalty to the logits.
"""
for token_id in set(generated_ids):
if logits[0, -1, token_id] < 0:
logits[0, -1, token_id] *= repetition_penalty
else:
logits[0, -1, token_id] /= repetition_penalty
return logits |