File size: 20,021 Bytes
35c1cfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import torch
import os
import logging
import torch.nn.functional as F
from slam_llm.models.slam_model import (
    slam_model,
    setup_tokenizer,
    setup_encoder,
    setup_encoder_projector,
    setup_llm,
)
from slam_llm.utils.train_utils import print_model_size
from typing import List, Optional
from slam_llm.utils.metric import compute_accuracy
from transformers import T5ForConditionalGeneration
from tqdm import tqdm
from utils.tts_adapter_utils import setup_tts_adapter
from utils.codec_utils import setup_codec
from utils.trick_utils import partial_freeze_weights, train_embedding_layer_only
from utils.snac_utils import layershift

logger = logging.getLogger(__name__)


def model_factory(train_config, model_config, ckpt_path, **kwargs):
    # return necessary components for training
    tokenizer = setup_tokenizer(train_config, model_config, **kwargs)

    if train_config.task_type == "s2s" or train_config.task_type == "asr":
        encoder = setup_encoder(train_config, model_config, **kwargs)
    elif train_config.task_type == "tts":
        encoder = None
    else:
        raise NotImplementedError

    # llm
    llm = setup_llm(train_config, model_config, **kwargs)

    # projector
    if encoder is not None:
        encoder_projector = setup_encoder_projector(
            train_config, model_config, **kwargs
        )
    else:
        encoder_projector = None

    codec_decoder = None
    if model_config.codec_decode:
        codec_decoder = setup_codec(train_config, model_config, **kwargs)

    tts_adapter = None
    if model_config.tts_adapter:
        adapter_config = model_config.tts_adapter_config
        tts_adapter = setup_tts_adapter(adapter_config, model_config, **kwargs)

    model = slam_model_s2s(
        encoder,
        llm,
        encoder_projector,
        tokenizer,
        tts_adapter,
        codec_decoder,
        train_config,
        model_config,
        **kwargs,
    )

    if ckpt_path is not None:
        logger.info("loading other parts from: {}".format(ckpt_path))
        ckpt_dict = torch.load(ckpt_path, map_location="cpu")
        model.load_state_dict(ckpt_dict, strict=False)

    if train_config.train_audio_embed_only:
        partial_freeze_weights(model, model_config.vocab_config.padded_text_vocabsize, model_config.vocab_config.total_vocabsize)

    if train_config.train_embed_only:
        train_embedding_layer_only(model)

    print_model_size(
        model,
        train_config,
        (
            int(os.environ["RANK"])
            if train_config.enable_fsdp or train_config.enable_ddp
            else 0
        ),
    )
    return model, tokenizer


class slam_model_s2s(slam_model):
    def __init__(

        self,

        encoder,

        llm,

        encoder_projector,

        tokenizer,

        tts_adapter,

        codec_decoder,

        train_config,

        model_config,

        **kwargs,

    ):
        super().__init__(
            encoder,
            llm,
            encoder_projector,
            tokenizer,
            train_config,
            model_config,
            **kwargs,
        )

        # resize llm embedding layer
        self.original_vocabsize = self.llm.lm_head.weight.size(0)
        if self.model_config.vocab_config.total_vocabsize != self.original_vocabsize:
            self.llm.resize_token_embeddings(self.model_config.vocab_config.total_vocabsize)

            if int(os.environ.get("RANK", "0")) == 0:
                logger.info("Resize llm embedding layer's vocab size to {}".format(self.model_config.vocab_config.total_vocabsize))

        self.codec_decoder = codec_decoder
        self.tts_adapter = tts_adapter
        self.code_layer = self.model_config.vocab_config.code_layer


    def forward(self,

                input_ids: torch.LongTensor = None,

                attention_mask: Optional[torch.Tensor] = None,

                position_ids: Optional[torch.LongTensor] = None,

                past_key_values: Optional[List[torch.FloatTensor]] = None,

                inputs_embeds: Optional[torch.FloatTensor] = None,

                labels: Optional[torch.LongTensor] = None,

                use_cache: Optional[bool] = None,

                output_attentions: Optional[bool] = None,

                output_hidden_states: Optional[bool] = None,

                return_dict: Optional[bool] = None,

                **kwargs,

                ):
        audio_mel = kwargs.get("audio_mel", None)
        audio_mel_post_mask = kwargs.get("audio_mel_post_mask", None) # 2x downsample for whisper

        audio = kwargs.get("audio", None)
        audio_mask = kwargs.get("audio_mask", None)

        modality_mask = kwargs.get("modality_mask", None)

        encoder_outs = None
        if audio_mel is not None or audio is not None:
            if self.train_config.freeze_encoder: # freeze encoder
                self.encoder.eval()

            if self.model_config.encoder_name == "whisper":
                encoder_outs = self.encoder.extract_variable_length_features(audio_mel.permute(0, 2, 1)) # bs*seq*dim
            if self.model_config.encoder_name == "wavlm":
                encoder_outs = self.encoder.extract_features(audio, 1 - audio_mask) #(FIX:MZY): 1-audio_mask is needed for wavlm as the padding mask
            if self.model_config.encoder_name == "hubert":
                results = self.encoder(source = audio, padding_mask = 1-audio_mask)
                if self.model_config.encoder_type == "pretrain":
                    encoder_outs, audio_mel_post_mask = results["x"], results["padding_mask"]
                if self.model_config.encoder_type == "finetune":
                    encoder_outs, audio_mel_post_mask = results["encoder_out"], results["padding_mask"]
                    encoder_outs = encoder_outs.transpose(0, 1)
            if self.encoder is None:
                encoder_outs = audio_mel if audio_mel is not None else audio

            if self.model_config.encoder_projector == "q-former":
                encoder_outs = self.encoder_projector(encoder_outs, audio_mel_post_mask)
            if self.model_config.encoder_projector == "linear":
                encoder_outs = self.encoder_projector(encoder_outs)
            if self.model_config.encoder_projector == "cov1d-linear": 
                encoder_outs = self.encoder_projector(encoder_outs)

        if input_ids is not None:
            input_ids[input_ids == -1] = 0  # [btz, 8, seq_length]

            if isinstance(self.llm, T5ForConditionalGeneration):
                inputs_embeds = self.llm.shared(input_ids)
            else:
                if hasattr(self.llm.model, "embed_tokens"):
                    inputs_embeds = self.llm.model.embed_tokens(input_ids)  # [btz, 8, seq_length, emb_dim]
                elif hasattr(self.llm.model.model, "embed_tokens"):
                    inputs_embeds = self.llm.model.model.embed_tokens(input_ids)
                else:
                    inputs_embeds = self.llm.model.model.model.embed_tokens(input_ids)

        if modality_mask is not None and encoder_outs is not None:
            modality_mask = modality_mask.unsqueeze(1).repeat(1, self.code_layer, 1)  # [btz, 8, seq_length]
            modality_mask_start_indices = (modality_mask == True).float().argmax(dim=2)
            modality_lengths = torch.clamp(modality_mask.sum(dim=2), max=encoder_outs.shape[1]).tolist()

            encoder_outs_pad = torch.zeros_like(inputs_embeds)
            for i in range(encoder_outs.shape[0]):
                for j in range(self.code_layer):
                    start_idx = modality_mask_start_indices[i, j].item()
                    length = modality_lengths[i][j]
                    encoder_outs_pad[i, j, start_idx:start_idx+length] = encoder_outs[i, :length]
            
            inputs_embeds[:, :self.code_layer, :, :] = encoder_outs_pad[:, :self.code_layer, :, :] + inputs_embeds[:, :self.code_layer, :, :] * (~modality_mask[:, :, :, None])
        
        inputs_embeds = torch.mean(inputs_embeds, dim=1)  # [btz, seq_length, emb_dim], average over the 8 layers

        if kwargs.get("inference_mode", False):
            return inputs_embeds, attention_mask

        text_labels = labels[:,self.code_layer] if labels is not None else None
        audio_labels = labels[:, :self.code_layer] if labels is not None else None
        model_outputs = self.llm(inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=text_labels)    # here we use the text token layer as the target label

        # parrallel generation
        # TODO: add tts adapter forward
        x_ori = model_outputs.logits
        text_vocab_size = self.model_config.vocab_config.padded_text_vocabsize
        audio_vocab_size = self.model_config.vocab_config.padded_audio_vocabsize
        xt = x_ori[..., :text_vocab_size]
        xa = []
        for i in range(self.code_layer):
            xa.append(x_ori[..., text_vocab_size + audio_vocab_size * i : text_vocab_size + audio_vocab_size * (i + 1)])

        loss_recorder = []
        total_loss, loss_recorder = self.compute_parallel_loss(xt, text_labels, xa, audio_labels)
        model_outputs.loss = total_loss

        text_acc = -1
        audio_acc = [-1 for _ in range(self.code_layer)]
        if self.metric:
            with torch.no_grad():
                preds = torch.argmax(xt, -1)
                text_acc = compute_accuracy(preds.detach()[:, :-1], text_labels.detach()[:, 1:], ignore_label=-100)

                preds_audio = [torch.argmax(xa[i], -1) for i in range(self.code_layer)]
                audio_acc = [compute_accuracy(preds_audio[i].detach()[:, :-1], audio_labels[:, i, 1:], ignore_label=-100) for i in range(self.code_layer)]

        # metrics = {"text_acc": text_acc, "audio_acc": audio_acc, "layer_loss": loss_recorder}
        return model_outputs, text_acc, audio_acc, loss_recorder



    def compute_parallel_loss(self, xt, text_labels, xa, audio_labels):
        """

        Compute the parallel loss for text and audio layers.

        """
        text_vocab_size = self.model_config.vocab_config.padded_text_vocabsize
        audio_vocab_size = self.model_config.vocab_config.padded_audio_vocabsize
        layer_loss = [0 for _ in range(self.code_layer+1) ]
        
        if text_labels is not None:
            # text_loss = F.cross_entropy(xt.reshape(-1, text_vocab_size), text_labels.reshape(-1), ignore_index=-100)
            text_loss = F.cross_entropy(xt[:, :-1, :].reshape(-1, text_vocab_size), text_labels[:, 1:].reshape(-1), ignore_index=-100)
            layer_loss[self.code_layer] = text_loss
        else:
            text_loss = 0

        total_audio_loss = 0
        single_audio_loss = 0
        for i in range(self.code_layer):
            if audio_labels[:,i] is not None:
                # audio_loss += F.cross_entropy(xa[i].reshape(-1, audio_vocab_size), audio_labels[:,i].reshape(-1), ignore_index=-100)
                single_audio_loss = F.cross_entropy(xa[i][:, :-1, :].reshape(-1, audio_vocab_size), audio_labels[:, i, 1:].reshape(-1), ignore_index=-100)
                layer_loss[i] = single_audio_loss
                total_audio_loss += single_audio_loss

        total_loss = (text_loss + total_audio_loss) / (self.code_layer+1)
        return total_loss, layer_loss


    @torch.no_grad()
    def generate(self,

                input_ids: torch.LongTensor = None,

                attention_mask: Optional[torch.Tensor] = None,

                position_ids: Optional[torch.LongTensor] = None,

                past_key_values: Optional[List[torch.FloatTensor]] = None,

                inputs_embeds: Optional[torch.FloatTensor] = None,

                labels: Optional[torch.LongTensor] = None,

                use_cache: Optional[bool] = None,

                output_attentions: Optional[bool] = None,

                output_hidden_states: Optional[bool] = None,

                return_dict: Optional[bool] = None,

                **kwargs,

                ):
        kwargs["inference_mode"] = True

        inputs_embeds, attention_mask = self.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            labels=labels,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            **kwargs,
        )

        generated_ids = [[] for _ in range((self.code_layer+1))]
        current_input_text = None
        current_audio_tokens = [None for _ in range(self.code_layer)]
        # input_pos = torch.arange(input_ids.size(-1), device=input_ids.device).unsqueeze(0)
        past_key_values = None

        text_vocab_size = self.model_config.vocab_config.padded_text_vocabsize
        audio_vocab_size = self.model_config.vocab_config.padded_audio_vocabsize

        max_new_tokens = kwargs.get("max_new_tokens", 360)
        repetition_penalty = kwargs.get("repetition_penalty", 1.0)
        decode_text_only = kwargs.get("decode_text_only", False)

        pad_t = self.model_config.vocab_config.pad_t
        pad_a = self.model_config.vocab_config.pad_a
        eot = self.model_config.vocab_config.eot
        eoa = self.model_config.vocab_config.eoa

        text_end = False     # Track whether text generation has ended
        audio_end = False    # Track whether audio generation has ended

        # NOTE: currently, we only support greedy decoding and sampling for parallel generation, no beam search
        for step in tqdm(range(max_new_tokens), desc="Generating"):
            if current_input_text is not None:
                audio_tokens = torch.cat([layershift(current_audio_tokens[i], i).unsqueeze(1) for i in range(self.code_layer)], dim=1)
                combined_input_ids = torch.cat([audio_tokens, current_input_text.unsqueeze(1)], dim=1)
                inputs_embeds = self.llm.model.embed_tokens(combined_input_ids)
                inputs_embeds = torch.mean(inputs_embeds, dim=1).unsqueeze(1)
            
            outputs = self.llm(
                inputs_embeds=inputs_embeds,                  # [btz, seq_len / 1, emb_dim]
                attention_mask=attention_mask,                # single sample, no need for attention mask
                past_key_values=past_key_values,
                # position_ids=input_pos,
                use_cache=True,
            )
            
            logits = outputs.logits
            past_key_values = outputs.past_key_values       # Update past_key_values for the next step

            # Split logits into text and audio layers based on vocab size
            xt_logits = logits[..., :text_vocab_size]
            xa_logits = [logits[..., text_vocab_size + audio_vocab_size * i : text_vocab_size + audio_vocab_size * (i + 1)] for i in range(self.code_layer)]

            # Apply repetition penalty to the logits
            if repetition_penalty != 1.0:
                xt_logits = self.repetition_penalty(xt_logits, generated_ids[self.code_layer], repetition_penalty)
                for i in range(self.code_layer):
                    xa_logits[i] = self.repetition_penalty(xa_logits[i], generated_ids[i], repetition_penalty)

            if not text_end:
                next_token_text = self.sample_next_token(xt_logits[:, -1, :], **kwargs)
            else:
                next_token_text = torch.tensor([pad_t], device=input_ids.device)

            next_tokens_audio = []
            for i in range(self.code_layer):
                if not audio_end and not decode_text_only:
                    next_token_audio = self.sample_next_token(xa_logits[i][:, -1, :], **kwargs)
                else:
                    next_token_audio = torch.full((input_ids.size(0),), pad_a, device=input_ids.device)
                next_tokens_audio.append(next_token_audio)

            if next_tokens_audio[-1] == eoa or decode_text_only:
                audio_end = True
            if next_token_text == eot:
                text_end = True
            
            # Update input_ids for the next step
            current_input_text = next_token_text
            for i in range(self.code_layer):
                current_audio_tokens[i] = next_tokens_audio[i]

            # if input_pos.size(-1) > 1:
            #     input_pos = torch.tensor(input_pos.size(-1), device=input_ids.device).unsqueeze(0)
            # else:
            #     input_pos = input_pos.add_(1)
            attention_mask = torch.cat([attention_mask, torch.ones((input_ids.size(0), 1), device=input_ids.device)], dim=1)

            if audio_end and text_end:
                break

            # Append generated tokens to the list
            for i in range(self.code_layer):
                generated_ids[i].append(next_tokens_audio[i].clone().tolist()[0])  # Audio layers
            generated_ids[self.code_layer].append(next_token_text.clone().tolist()[0])  # Text layer

        # Concatenate the generated tokens to form the complete sequence
        text_tokens = generated_ids[-1]
        generated_ids[-1] = text_tokens[: text_tokens.index(eot)] if eot in text_tokens else text_tokens
        generated_ids = [torch.tensor(layer) for layer in generated_ids] 
        return generated_ids


    @torch.no_grad()
    def sample_next_token(self, logits, **kwargs):
        """

        Generate the next token based on the model output logits.

        Supports both greedy decoding, top-k sampling, and top-p (nucleus) sampling.

        """
        do_sample = kwargs.get("do_sample", False)
        temperature = kwargs.get("temperature", 1.0)
        top_k = kwargs.get("top_k", 50)
        top_p = kwargs.get("top_p", 1.0)
        num_samples = kwargs.get("num_samples", 1)

        # Adjust logits with temperature
        logits = logits.squeeze(0)
        logits = logits / temperature

        # Top-k filtering
        if top_k > 0:
            top_k = min(top_k, logits.size(-1))  # Make sure top_k is within the vocab size
            values, indices = torch.topk(logits, top_k)
            logits[logits < values[..., [-1]]] = -float('Inf')  # Filter tokens not in top_k

        # Top-p filtering (nucleus sampling)
        if top_p < 1.0:
            sorted_logits, sorted_indices = torch.sort(logits, descending=True)
            cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)

            # Remove tokens with cumulative probability above the threshold
            sorted_indices_to_remove = cumulative_probs > top_p
            sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
            sorted_indices_to_remove[..., 0] = 0

            indices_to_remove = sorted_indices[sorted_indices_to_remove]
            logits[indices_to_remove] = -float('Inf')

        if do_sample:
            # Perform sampling
            return torch.multinomial(F.softmax(logits, dim=-1), num_samples=num_samples)
        else:
            # Greedy decoding (argmax)
            return torch.argmax(logits, dim=-1, keepdim=True)


    def repetition_penalty(self, logits, generated_ids, repetition_penalty):
        """

        Apply repetition penalty to the logits.

        """
        for token_id in set(generated_ids):
            if logits[0, -1, token_id] < 0:
                logits[0, -1, token_id] *= repetition_penalty
            else:
                logits[0, -1, token_id] /= repetition_penalty

        return logits