Spaces:
Runtime error
Runtime error
""" | |
* Copyright (c) 2023 Salesforce, Inc. | |
* All rights reserved. | |
* SPDX-License-Identifier: Apache License 2.0 | |
* For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/ | |
* By Can Qin | |
* Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet | |
* Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala | |
""" | |
import config | |
import cv2 | |
import einops | |
import gradio as gr | |
import numpy as np | |
import torch | |
import random | |
import os | |
from annotator.util import resize_image, HWC3 | |
from utils import create_model | |
from lib.ddim_hacked import DDIMSampler | |
from safetensors.torch import load_file as stload | |
from collections import OrderedDict | |
from diffusers import StableDiffusionXLImg2ImgPipeline | |
from PIL import Image | |
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-refiner-1.0", | |
torch_dtype=torch.float16, | |
) | |
refiner.to("cuda") | |
model = create_model("./models/cldm_v15_unicontrol.yaml").cpu() | |
model_url = "https://huggingface.co./Robert001/UniControl-Model/resolve/main/unicontrol_v1.1.st" | |
ckpts_path = "./" | |
# model_path = os.path.join(ckpts_path, "unicontrol_v1.1.ckpt") | |
model_path = os.path.join(ckpts_path, "unicontrol_v1.1.st") | |
if not os.path.exists(model_path): | |
from basicsr.utils.download_util import load_file_from_url | |
load_file_from_url(model_url, model_dir=ckpts_path) | |
model_dict = OrderedDict(stload(model_path, device="cpu")) | |
model.load_state_dict(model_dict, strict=False) | |
# model.load_state_dict(load_state_dict(model_path, location='cuda'), strict=False) | |
model = model.cuda() | |
ddim_sampler = DDIMSampler(model) | |
def process_sketch( | |
input_image, | |
prompt, | |
a_prompt, | |
n_prompt, | |
num_samples, | |
ddim_steps, | |
guess_mode, | |
strength, | |
scale, | |
seed, | |
eta, | |
): | |
with torch.no_grad(): | |
input_image = np.array(input_image) | |
# print all unique values of array | |
img = 255 - input_image | |
H, W, C = img.shape | |
detected_map = cv2.resize(img, (W, H), interpolation=cv2.INTER_LINEAR) | |
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0 | |
control = torch.stack([control for _ in range(num_samples)], dim=0) | |
control = einops.rearrange(control, "b h w c -> b c h w").clone() | |
if seed == -1: | |
seed = random.randint(0, 65535) | |
# seed_everything(seed) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
task_dic = {} | |
task_dic["name"] = "control_hedsketch" | |
task_instruction = "sketch to image" | |
task_dic["feature"] = model.get_learned_conditioning(task_instruction)[:, :1, :] | |
cond = { | |
"c_concat": [control], | |
"c_crossattn": [model.get_learned_conditioning([prompt + ", " + a_prompt] * num_samples)], | |
"task": task_dic, | |
} | |
un_cond = { | |
"c_concat": [control * 0] if guess_mode else [control], | |
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)], | |
} | |
shape = (4, H // 8, W // 8) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=True) | |
model.control_scales = ( | |
[strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13) | |
) | |
samples, intermediates = ddim_sampler.sample( | |
ddim_steps, | |
num_samples, | |
shape, | |
cond, | |
verbose=False, | |
eta=eta, | |
unconditional_guidance_scale=scale, | |
unconditional_conditioning=un_cond, | |
) | |
if config.save_memory: | |
model.low_vram_shift(is_diffusing=False) | |
x_samples = model.decode_first_stage(samples) | |
x_samples = ( | |
(einops.rearrange(x_samples, "b c h w -> b h w c") * 127.5 + 127.5) | |
.cpu() | |
.numpy() | |
.clip(0, 255) | |
.astype(np.uint8) | |
) | |
result_image = [x_samples[i] for i in range(num_samples)][0] | |
result_image = Image.fromarray(result_image) | |
generator = torch.Generator("cuda").manual_seed(seed) | |
results = [result_image] + [refiner(prompt=prompt, generator=generator, image=result_image).images[0]] | |
return results | |
demo = gr.Blocks() | |
with demo: | |
gr.Markdown("## Sketch to Image") | |
gr.Markdown( | |
"This demo is based on [UniControl: ONE compact model for ALL the visual-condition-to-image generation](https://huggingface.co./spaces/Robert001/UniControl-Demo)" | |
) | |
# input_image = gr.Image(source="upload", type="numpy", tool="sketch") | |
with gr.Row(): | |
input_image = gr.Sketchpad( | |
shape=(512, 512), tool="pencil", brush_radius=6, type="pil", image_mode="RGB" | |
).style(height=512, width=512) | |
# input_image = gr.Image(source="upload", type="numpy") | |
result_gallery = gr.Gallery(label="Output", show_label=False, elem_id="gallery").style( | |
grid=2, height=512, width=512 | |
) | |
prompt = gr.Textbox(label="Prompt") | |
run_button = gr.Button(label="Run") | |
with gr.Accordion("Advanced options", open=False): | |
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1) | |
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01) | |
guess_mode = gr.Checkbox(label="Guess Mode", value=False) | |
detect_resolution = gr.Slider(label="HED Resolution", minimum=128, maximum=1024, value=512, step=1) | |
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=35, step=1) | |
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1) | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True) | |
eta = gr.Number(label="eta (DDIM)", value=0.0) | |
a_prompt = gr.Textbox(label="Added Prompt", value="best quality, extremely detailed") | |
n_prompt = gr.Textbox( | |
label="Negative Prompt", | |
value="longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality", | |
) | |
ips = [ | |
input_image, | |
prompt, | |
a_prompt, | |
n_prompt, | |
num_samples, | |
ddim_steps, | |
guess_mode, | |
strength, | |
scale, | |
seed, | |
eta, | |
] | |
run_button.click(fn=process_sketch, inputs=ips, outputs=[result_gallery]) | |
demo.launch(server_name="0.0.0.0") | |