sketch-to-image / _app.py
abhishek's picture
abhishek HF staff
first commit
58f667f
raw
history blame
74.7 kB
'''
* Copyright (c) 2023 Salesforce, Inc.
* All rights reserved.
* SPDX-License-Identifier: Apache License 2.0
* For full license text, see LICENSE.txt file in the repo root or http://www.apache.org/licenses/
* By Can Qin
* Modified from ControlNet repo: https://github.com/lllyasviel/ControlNet
* Copyright (c) 2023 Lvmin Zhang and Maneesh Agrawala
'''
import config
import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random
import os
from pytorch_lightning import seed_everything
from annotator.util import resize_image, HWC3
from annotator.uniformer_base import UniformerDetector
from annotator.hed import HEDdetector
from annotator.canny import CannyDetector
from annotator.midas import MidasDetector
from annotator.outpainting import Outpainter
from annotator.openpose import OpenposeDetector
from annotator.inpainting import Inpainter
from annotator.grayscale import GrayscaleConverter
from annotator.blur import Blurrer
import cvlib as cv
from utils import create_model, load_state_dict
from lib.ddim_hacked import DDIMSampler
from safetensors.torch import load_file as stload
from collections import OrderedDict
apply_uniformer = UniformerDetector()
apply_midas = MidasDetector()
apply_canny = CannyDetector()
apply_hed = HEDdetector()
model_outpainting = Outpainter()
apply_openpose = OpenposeDetector()
model_grayscale = GrayscaleConverter()
model_blur = Blurrer()
model_inpainting = Inpainter()
def midas(img, res):
img = resize_image(HWC3(img), res)
results = apply_midas(img)
return results
def outpainting(img, res, height_top_extended, height_down_extended, width_left_extended, width_right_extended):
img = resize_image(HWC3(img), res)
result = model_outpainting(img, height_top_extended, height_down_extended, width_left_extended, width_right_extended)
return result
def grayscale(img, res):
img = resize_image(HWC3(img), res)
result = model_grayscale(img)
return result
def blur(img, res, ksize):
img = resize_image(HWC3(img), res)
result = model_blur(img, ksize)
return result
def inpainting(img, res, height_top_mask, height_down_mask, width_left_mask, width_right_mask):
img = resize_image(HWC3(img), res)
result = model_inpainting(img, height_top_mask, height_down_mask, width_left_mask, width_right_mask)
return result
model = create_model('./models/cldm_v15_unicontrol.yaml').cpu()
# model_url = 'https://huggingface.co./Robert001/UniControl-Model/resolve/main/unicontrol_v1.1.ckpt'
model_url = 'https://huggingface.co./Robert001/UniControl-Model/resolve/main/unicontrol_v1.1.st'
ckpts_path='./'
# model_path = os.path.join(ckpts_path, "unicontrol_v1.1.ckpt")
model_path = os.path.join(ckpts_path, "unicontrol_v1.1.st")
if not os.path.exists(model_path):
from basicsr.utils.download_util import load_file_from_url
load_file_from_url(model_url, model_dir=ckpts_path)
model_dict = OrderedDict(stload(model_path, device='cpu'))
model.load_state_dict(model_dict, strict=False)
# model.load_state_dict(load_state_dict(model_path, location='cuda'), strict=False)
model = model.cuda()
ddim_sampler = DDIMSampler(model)
task_to_name = {'hed': 'control_hed', 'canny': 'control_canny', 'seg': 'control_seg', 'segbase': 'control_seg',
'depth': 'control_depth', 'normal': 'control_normal', 'openpose': 'control_openpose',
'bbox': 'control_bbox', 'grayscale': 'control_grayscale', 'outpainting': 'control_outpainting',
'hedsketch': 'control_hedsketch', 'inpainting': 'control_inpainting', 'blur': 'control_blur',
'grayscale': 'control_grayscale'}
name_to_instruction = {"control_hed": "hed edge to image", "control_canny": "canny edge to image",
"control_seg": "segmentation map to image", "control_depth": "depth map to image",
"control_normal": "normal surface map to image", "control_img": "image editing",
"control_openpose": "human pose skeleton to image", "control_hedsketch": "sketch to image",
"control_bbox": "bounding box to image", "control_outpainting": "image outpainting",
"control_grayscale": "gray image to color image", "control_blur": "deblur image to clean image",
"control_inpainting": "image inpainting"}
def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
strength, scale, seed, eta, low_threshold, high_threshold, condition_mode):
with torch.no_grad():
img = resize_image(HWC3(input_image), image_resolution)
H, W, C = img.shape
if condition_mode == True:
detected_map = apply_canny(img, low_threshold, high_threshold)
detected_map = HWC3(detected_map)
else:
detected_map = 255 - img
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
task = 'canny'
task_dic = {}
task_dic['name'] = task_to_name[task]
task_instruction = name_to_instruction[task_dic['name']]
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
cond = {"c_concat": [control],
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
"task": task_dic}
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
if config.save_memory:
model.low_vram_shift(is_diffusing=True)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13)
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
255).astype(
np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [255 - detected_map] + results
def process_hed(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps,
guess_mode, strength, scale, seed, eta, condition_mode):
with torch.no_grad():
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
if condition_mode == True:
detected_map = apply_hed(resize_image(input_image, detect_resolution))
detected_map = HWC3(detected_map)
else:
detected_map = img
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
task = 'hed'
task_dic = {}
task_dic['name'] = task_to_name[task]
task_instruction = name_to_instruction[task_dic['name']]
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
cond = {"c_concat": [control],
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
"task": task_dic}
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
if config.save_memory:
model.low_vram_shift(is_diffusing=True)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else ([strength] * 13)
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
255).astype(
np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [detected_map] + results
def process_depth(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps,
guess_mode, strength, scale, seed, eta, condition_mode):
with torch.no_grad():
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
if condition_mode == True:
detected_map, _ = apply_midas(resize_image(input_image, detect_resolution))
detected_map = HWC3(detected_map)
else:
detected_map = img
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
task = 'depth'
task_dic = {}
task_dic['name'] = task_to_name[task]
task_instruction = name_to_instruction[task_dic['name']]
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
cond = {"c_concat": [control],
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
"task": task_dic}
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
if config.save_memory:
model.low_vram_shift(is_diffusing=True)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
[strength] * 13)
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
255).astype(
np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [detected_map] + results
def process_normal(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode):
with torch.no_grad():
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
if condition_mode == True:
_, detected_map = apply_midas(resize_image(input_image, detect_resolution))
detected_map = HWC3(detected_map)
else:
detected_map = img
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
task = 'normal'
task_dic = {}
task_dic['name'] = task_to_name[task]
task_instruction = name_to_instruction[task_dic['name']]
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
cond = {"c_concat": [control],
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
"task": task_dic}
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
if config.save_memory:
model.low_vram_shift(is_diffusing=True)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
[strength] * 13)
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
255).astype(
np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [detected_map] + results
def process_pose(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps,
guess_mode, strength, scale, seed, eta, condition_mode):
with torch.no_grad():
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
if condition_mode == True:
detected_map, _ = apply_openpose(resize_image(input_image, detect_resolution))
detected_map = HWC3(detected_map)
else:
detected_map = img
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
task = 'openpose'
task_dic = {}
task_dic['name'] = task_to_name[task]
task_instruction = name_to_instruction[task_dic['name']]
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
cond = {"c_concat": [control],
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
"task": task_dic}
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
if config.save_memory:
model.low_vram_shift(is_diffusing=True)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
[strength] * 13)
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
255).astype(
np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [detected_map] + results
def process_seg(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps,
guess_mode, strength, scale, seed, eta, condition_mode):
with torch.no_grad():
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
if condition_mode == True:
detected_map = apply_uniformer(resize_image(input_image, detect_resolution))
else:
detected_map = img
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
task = 'seg'
task_dic = {}
task_dic['name'] = task_to_name[task]
task_instruction = name_to_instruction[task_dic['name']]
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
cond = {"c_concat": [control],
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
"task": task_dic}
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
if config.save_memory:
model.low_vram_shift(is_diffusing=True)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
[strength] * 13)
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
255).astype(
np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [detected_map] + results
color_dict = {
'background': (0, 0, 100),
'person': (255, 0, 0),
'bicycle': (0, 255, 0),
'car': (0, 0, 255),
'motorcycle': (255, 255, 0),
'airplane': (255, 0, 255),
'bus': (0, 255, 255),
'train': (128, 128, 0),
'truck': (128, 0, 128),
'boat': (0, 128, 128),
'traffic light': (128, 128, 128),
'fire hydrant': (64, 0, 0),
'stop sign': (0, 64, 0),
'parking meter': (0, 0, 64),
'bench': (64, 64, 0),
'bird': (64, 0, 64),
'cat': (0, 64, 64),
'dog': (192, 192, 192),
'horse': (32, 32, 32),
'sheep': (96, 96, 96),
'cow': (160, 160, 160),
'elephant': (224, 224, 224),
'bear': (32, 0, 0),
'zebra': (0, 32, 0),
'giraffe': (0, 0, 32),
'backpack': (32, 32, 0),
'umbrella': (32, 0, 32),
'handbag': (0, 32, 32),
'tie': (96, 0, 0),
'suitcase': (0, 96, 0),
'frisbee': (0, 0, 96),
'skis': (96, 96, 0),
'snowboard': (96, 0, 96),
'sports ball': (0, 96, 96),
'kite': (160, 0, 0),
'baseball bat': (0, 160, 0),
'baseball glove': (0, 0, 160),
'skateboard': (160, 160, 0),
'surfboard': (160, 0, 160),
'tennis racket': (0, 160, 160),
'bottle': (224, 0, 0),
'wine glass': (0, 224, 0),
'cup': (0, 0, 224),
'fork': (224, 224, 0),
'knife': (224, 0, 224),
'spoon': (0, 224, 224),
'bowl': (64, 64, 64),
'banana': (128, 64, 64),
'apple': (64, 128, 64),
'sandwich': (64, 64, 128),
'orange': (128, 128, 64),
'broccoli': (128, 64, 128),
'carrot': (64, 128, 128),
'hot dog': (192, 64, 64),
'pizza': (64, 192, 64),
'donut': (64, 64, 192),
'cake': (192, 192, 64),
'chair': (192, 64, 192),
'couch': (64, 192, 192),
'potted plant': (96, 32, 32),
'bed': (32, 96, 32),
'dining table': (32, 32, 96),
'toilet': (96, 96, 32),
'tv': (96, 32, 96),
'laptop': (32, 96, 96),
'mouse': (160, 32, 32),
'remote': (32, 160, 32),
'keyboard': (32, 32, 160),
'cell phone': (160, 160, 32),
'microwave': (160, 32, 160),
'oven': (32, 160, 160),
'toaster': (224, 32, 32),
'sink': (32, 224, 32),
'refrigerator': (32, 32, 224),
'book': (224, 224, 32),
'clock': (224, 32, 224),
'vase': (32, 224, 224),
'scissors': (64, 96, 96),
'teddy bear': (96, 64, 96),
'hair drier': (96, 96, 64),
'toothbrush': (160, 96, 96)
}
def process_bbox(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
strength, scale, seed, eta, confidence, nms_thresh, condition_mode):
with torch.no_grad():
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
if condition_mode == True:
bbox, label, conf = cv.detect_common_objects(input_image, confidence=confidence, nms_thresh=nms_thresh)
mask = np.zeros((input_image.shape), np.uint8)
if len(bbox) > 0:
order_area = np.zeros(len(bbox))
# order_final = np.arange(len(bbox))
area_all = 0
for idx_mask, box in enumerate(bbox):
x_1, y_1, x_2, y_2 = box
x_1 = 0 if x_1 < 0 else x_1
y_1 = 0 if y_1 < 0 else y_1
x_2 = input_image.shape[1] if x_2 < 0 else x_2
y_2 = input_image.shape[0] if y_2 < 0 else y_2
area = (x_2 - x_1) * (y_2 - y_1)
order_area[idx_mask] = area
area_all += area
ordered_area = np.argsort(-order_area)
for idx_mask in ordered_area:
box = bbox[idx_mask]
x_1, y_1, x_2, y_2 = box
x_1 = 0 if x_1 < 0 else x_1
y_1 = 0 if y_1 < 0 else y_1
x_2 = input_image.shape[1] if x_2 < 0 else x_2
y_2 = input_image.shape[0] if y_2 < 0 else y_2
mask[y_1:y_2, x_1:x_2, :] = color_dict[label[idx_mask]]
detected_map = mask
else:
detected_map = img
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
task = 'bbox'
task_dic = {}
task_dic['name'] = task_to_name[task]
task_instruction = name_to_instruction[task_dic['name']]
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
cond = {"c_concat": [control],
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
"task": task_dic}
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
if config.save_memory:
model.low_vram_shift(is_diffusing=True)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
[strength] * 13)
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
255).astype(
np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [detected_map] + results
def process_outpainting(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
strength, scale, seed, eta, height_top_extended, height_down_extended, width_left_extended, width_right_extended, condition_mode):
with torch.no_grad():
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
if condition_mode == True:
detected_map = outpainting(input_image, image_resolution, height_top_extended, height_down_extended, width_left_extended, width_right_extended)
else:
detected_map = img
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
task = 'outpainting'
task_dic = {}
task_dic['name'] = task_to_name[task]
task_instruction = name_to_instruction[task_dic['name']]
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
cond = {"c_concat": [control],
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
"task": task_dic}
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
if config.save_memory:
model.low_vram_shift(is_diffusing=True)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
[strength] * 13)
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
255).astype(
np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [detected_map] + results
def process_sketch(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode):
with torch.no_grad():
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
if condition_mode == True:
detected_map = apply_hed(resize_image(input_image, detect_resolution))
detected_map = HWC3(detected_map)
# sketch the hed image
retry = 0
cnt = 0
while retry == 0:
threshold_value = np.random.randint(110, 160)
kernel_size = 3
alpha = 1.5
beta = 50
binary_image = cv2.threshold(detected_map, threshold_value, 255, cv2.THRESH_BINARY)[1]
inverted_image = cv2.bitwise_not(binary_image)
smoothed_image = cv2.GaussianBlur(inverted_image, (kernel_size, kernel_size), 0)
sketch_image = cv2.convertScaleAbs(smoothed_image, alpha=alpha, beta=beta)
if np.sum(sketch_image < 5) > 0.005 * sketch_image.shape[0] * sketch_image.shape[1] or cnt == 5:
retry = 1
else:
cnt += 1
detected_map = sketch_image
else:
detected_map = img
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
task = 'hedsketch'
task_dic = {}
task_dic['name'] = task_to_name[task]
task_instruction = name_to_instruction[task_dic['name']]
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
cond = {"c_concat": [control],
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
"task": task_dic}
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
if config.save_memory:
model.low_vram_shift(is_diffusing=True)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
[strength] * 13)
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
255).astype(
np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [detected_map] + results
def process_colorization(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
strength, scale, seed, eta, condition_mode):
with torch.no_grad():
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
if condition_mode == True:
detected_map = grayscale(input_image, image_resolution)
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
detected_map = detected_map[:, :, np.newaxis]
detected_map = detected_map.repeat(3, axis=2)
else:
detected_map = img
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
task = 'grayscale'
task_dic = {}
task_dic['name'] = task_to_name[task]
task_instruction = name_to_instruction[task_dic['name']]
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
cond = {"c_concat": [control],
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
"task": task_dic}
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
if config.save_memory:
model.low_vram_shift(is_diffusing=True)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
[strength] * 13)
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
255).astype(
np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [detected_map] + results
def process_deblur(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
strength, scale, seed, eta, ksize, condition_mode):
with torch.no_grad():
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
if condition_mode == True:
detected_map = blur(input_image, image_resolution, ksize)
else:
detected_map = img
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
task = 'blur'
task_dic = {}
task_dic['name'] = task_to_name[task]
task_instruction = name_to_instruction[task_dic['name']]
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
cond = {"c_concat": [control],
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
"task": task_dic}
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
if config.save_memory:
model.low_vram_shift(is_diffusing=True)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
[strength] * 13)
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
255).astype(
np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [detected_map] + results
def process_inpainting(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
strength, scale, seed, eta, h_ratio_t, h_ratio_d, w_ratio_l, w_ratio_r, condition_mode):
with torch.no_grad():
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
if condition_mode == True:
detected_map = inpainting(input_image, image_resolution, h_ratio_t, h_ratio_d, w_ratio_l, w_ratio_r)
else:
detected_map = img
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
task = 'inpainting'
task_dic = {}
task_dic['name'] = task_to_name[task]
task_instruction = name_to_instruction[task_dic['name']]
task_dic['feature'] = model.get_learned_conditioning(task_instruction)[:, :1, :]
cond = {"c_concat": [control],
"c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)],
"task": task_dic}
un_cond = {"c_concat": [control * 0] if guess_mode else [control],
"c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
shape = (4, H // 8, W // 8)
if config.save_memory:
model.low_vram_shift(is_diffusing=True)
model.control_scales = [strength * (0.825 ** float(12 - i)) for i in range(13)] if guess_mode else (
[strength] * 13)
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
shape, cond, verbose=False, eta=eta,
unconditional_guidance_scale=scale,
unconditional_conditioning=un_cond)
if config.save_memory:
model.low_vram_shift(is_diffusing=False)
x_samples = model.decode_first_stage(samples)
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0,
255).astype(
np.uint8)
results = [x_samples[i] for i in range(num_samples)]
return [detected_map] + results
############################################################################################################
demo = gr.Blocks()
with demo:
#gr.Markdown("UniControl Stable Diffusion Demo")
gr.HTML(
"""
<div style="text-align: center; max-width: 1200px; margin: 20px auto;">
<h1 style="font-weight: 900; font-size: 2rem; margin: 0rem">
UniControl Stable Diffusion Demo
</h1>
<p style="font-size: 1rem; margin: 0rem">
Can Qin <sup>1,2</sup>, Shu Zhang<sup>1</sup>, Ning Yu <sup>1</sup>, Yihao Feng<sup>1</sup>, Xinyi Yang<sup>1</sup>, Yingbo Zhou <sup>1</sup>, Huan Wang <sup>1</sup>, Juan Carlos Niebles<sup>1</sup>, Caiming Xiong <sup>1</sup>, Silvio Savarese <sup>1</sup>, Stefano Ermon <sup>3</sup>, Yun Fu <sup>2</sup>, Ran Xu <sup>1</sup>
</p>
<p style="font-size: 0.8rem; margin: 0rem; line-height: 1em">
<sup>1</sup> Salesforce AI <sup>2</sup> Northeastern University <sup>3</sup> Stanford University
</p>
<p style="font-size: 0.8rem; margin: 0rem; line-height: 1em">
Work done when Can Qin was an intern at Salesforce AI Research.
</p>
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em">
<b> ONE compact model for ALL the visual-condition-to-image generation! </b>
<b><a href="https://github.com/salesforce/UniControl">[Github]</a></b>
<b><a href="https://canqin001.github.io/UniControl-Page/">[Website]</a></b>
<b><a href="https://arxiv.org/abs/2305.11147">[arXiv]</a></b>
</p>
</div>
""")
with gr.Tabs():
with gr.TabItem("Canny"):
with gr.Row():
gr.Markdown("## UniControl Stable Diffusion with Canny Edge Maps")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
step=64)
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Canny', value=True)
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=40, step=1)
high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200,
step=1)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
height='auto')
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
strength, scale, seed, eta, low_threshold, high_threshold, condition_mode]
run_button.click(fn=process_canny, inputs=ips, outputs=[result_gallery])
with gr.TabItem("HED"):
with gr.Row():
gr.Markdown("## UniControl Stable Diffusion with HED Maps")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
step=64)
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> HED', value=True)
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
detect_resolution = gr.Slider(label="HED Resolution", minimum=128, maximum=1024, value=512,
step=1)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
height='auto')
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode]
run_button.click(fn=process_hed, inputs=ips, outputs=[result_gallery])
with gr.TabItem("Sketch"):
with gr.Row():
gr.Markdown("## UniControl Stable Diffusion with Sketch Maps")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
step=64)
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Sketch', value=False)
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
detect_resolution = gr.Slider(label="HED Resolution", minimum=128, maximum=1024, value=512,
step=1)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
height='auto')
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode]
run_button.click(fn=process_sketch, inputs=ips, outputs=[result_gallery])
with gr.TabItem("Depth"):
with gr.Row():
gr.Markdown("## UniControl Stable Diffusion with Depth Maps")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
step=64)
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Depth', value=True)
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384,
step=1)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
height='auto')
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode]
run_button.click(fn=process_depth, inputs=ips, outputs=[result_gallery])
with gr.TabItem("Normal"):
with gr.Row():
gr.Markdown("## UniControl Stable Diffusion with Normal Surface")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
step=64)
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Normal', value=True)
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
detect_resolution = gr.Slider(label="Depth Resolution", minimum=128, maximum=1024, value=384,
step=1)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
height='auto')
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode]
run_button.click(fn=process_normal, inputs=ips, outputs=[result_gallery])
with gr.TabItem("Human Pose"):
with gr.Row():
gr.Markdown("## UniControl Stable Diffusion with Human Pose")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
step=64)
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Skeleton', value=True)
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
detect_resolution = gr.Slider(label="OpenPose Resolution", minimum=128, maximum=1024, value=512,
step=1)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
height='auto')
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode]
run_button.click(fn=process_pose, inputs=ips, outputs=[result_gallery])
with gr.TabItem("Segmentation"):
with gr.Row():
gr.Markdown("## UniControl Stable Diffusion with Segmentation Maps (ADE20K)")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
step=64)
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Seg', value=True)
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
detect_resolution = gr.Slider(label="Segmentation Resolution", minimum=128, maximum=1024,
value=512, step=1)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
height='auto')
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution,
ddim_steps, guess_mode, strength, scale, seed, eta, condition_mode]
run_button.click(fn=process_seg, inputs=ips, outputs=[result_gallery])
with gr.TabItem("Bbox"):
with gr.Row():
gr.Markdown("## UniControl Stable Diffusion with Object Bounding Boxes (MS-COCO)")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
step=64)
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Bbox', value=True)
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
confidence = gr.Slider(label="Confidence of Detection", minimum=0.1, maximum=1.0, value=0.4,
step=0.1)
nms_thresh = gr.Slider(label="Nms Threshold", minimum=0.1, maximum=1.0, value=0.5, step=0.1)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, bright')
n_prompt = gr.Textbox(label="Negative Prompt", value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
height='auto')
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
strength, scale, seed, eta, confidence, nms_thresh, condition_mode]
run_button.click(fn=process_bbox, inputs=ips, outputs=[result_gallery])
with gr.TabItem("Outpainting"):
with gr.Row():
gr.Markdown("## UniControl Stable Diffusion with Image Outpainting")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
step=64)
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
condition_mode = gr.Checkbox(label='Condition Extraction: Extending', value=False)
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
height_top_extended = gr.Slider(label="Top Extended Ratio (%)", minimum=1, maximum=200,
value=50, step=1)
height_down_extended = gr.Slider(label="Down Extended Ratio (%)", minimum=1, maximum=200,
value=50, step=1)
width_left_extended = gr.Slider(label="Left Extended Ratio (%)", minimum=1, maximum=200,
value=50, step=1)
width_right_extended = gr.Slider(label="Right Extended Ratio (%)", minimum=1, maximum=200,
value=50, step=1)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
n_prompt = gr.Textbox(label="Negative Prompt", value='')
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
height='auto')
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
strength, scale, seed, eta, height_top_extended, height_down_extended, width_left_extended, width_right_extended, condition_mode]
run_button.click(fn=process_outpainting, inputs=ips, outputs=[result_gallery])
with gr.TabItem("Inpainting"):
with gr.Row():
gr.Markdown("## UniControl Stable Diffusion with Image Inpainting")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
step=64)
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
condition_mode = gr.Checkbox(label='Condition Extraction: Cropped Masking', value=False)
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
h_ratio_t = gr.Slider(label="Top Masking Ratio (%)", minimum=0, maximum=100, value=30,
step=1)
h_ratio_d = gr.Slider(label="Down Masking Ratio (%)", minimum=0, maximum=100, value=60,
step=1)
w_ratio_l = gr.Slider(label="Left Masking Ratio (%)", minimum=0, maximum=100, value=30,
step=1)
w_ratio_r = gr.Slider(label="Right Masking Ratio (%)", minimum=0, maximum=100, value=60,
step=1)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
n_prompt = gr.Textbox(label="Negative Prompt", value='')
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
height='auto')
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
strength, scale, seed, eta, h_ratio_t, h_ratio_d, w_ratio_l, w_ratio_r, condition_mode]
run_button.click(fn=process_inpainting, inputs=ips, outputs=[result_gallery])
with gr.TabItem("Colorization"):
with gr.Row():
gr.Markdown("## UniControl Stable Diffusion with Gray Image Colorization")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
step=64)
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Gray', value=False)
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed, colorful')
n_prompt = gr.Textbox(label="Negative Prompt", value='')
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
height='auto')
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
strength, scale, seed, eta, condition_mode]
run_button.click(fn=process_colorization, inputs=ips, outputs=[result_gallery])
with gr.TabItem("Deblurring"):
with gr.Row():
gr.Markdown("## UniControl Stable Diffusion with Image Deblurring")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy")
prompt = gr.Textbox(label="Prompt")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512,
step=64)
strength = gr.Slider(label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
condition_mode = gr.Checkbox(label='Condition Extraction: RGB -> Blur', value=False)
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
ksize = gr.Slider(label="Kernel Size", minimum=11, maximum=101, value=51, step=2)
ddim_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(label="Added Prompt", value='best quality, extremely detailed')
n_prompt = gr.Textbox(label="Negative Prompt", value='')
with gr.Column():
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2,
height='auto')
ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, guess_mode,
strength, scale, seed, eta, ksize, condition_mode]
run_button.click(fn=process_deblur, inputs=ips, outputs=[result_gallery])
gr.Markdown('''### Tips
- Please pay attention to <u> Condition Extraction </u> option.
- Positive prompts and negative prompts are very useful sometimes.
''')
gr.Markdown('''### Related Spaces
- https://huggingface.co./spaces/hysts/ControlNet
- https://huggingface.co./spaces/shi-labs/Prompt-Free-Diffusion
''')
demo.launch()