Spaces:
Runtime error
Runtime error
Create controlnet_inpaint.py
Browse files- controlnet_inpaint.py +1076 -0
controlnet_inpaint.py
ADDED
@@ -0,0 +1,1076 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Inspired by: https://github.com/haofanwang/ControlNet-for-Diffusers/
|
2 |
+
|
3 |
+
import inspect
|
4 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import PIL.Image
|
8 |
+
import torch
|
9 |
+
import torch.nn.functional as F
|
10 |
+
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
|
11 |
+
|
12 |
+
from diffusers import AutoencoderKL, ControlNetModel, DiffusionPipeline, UNet2DConditionModel, logging
|
13 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
|
14 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
15 |
+
from diffusers.utils import (
|
16 |
+
PIL_INTERPOLATION,
|
17 |
+
is_accelerate_available,
|
18 |
+
is_accelerate_version,
|
19 |
+
randn_tensor,
|
20 |
+
replace_example_docstring,
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
25 |
+
|
26 |
+
EXAMPLE_DOC_STRING = """
|
27 |
+
Examples:
|
28 |
+
```py
|
29 |
+
>>> import numpy as np
|
30 |
+
>>> import torch
|
31 |
+
>>> from PIL import Image
|
32 |
+
>>> from stable_diffusion_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline
|
33 |
+
|
34 |
+
>>> from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
35 |
+
>>> from diffusers import ControlNetModel, UniPCMultistepScheduler
|
36 |
+
>>> from diffusers.utils import load_image
|
37 |
+
|
38 |
+
>>> def ade_palette():
|
39 |
+
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
40 |
+
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
|
41 |
+
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
|
42 |
+
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
|
43 |
+
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
|
44 |
+
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
45 |
+
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
|
46 |
+
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
|
47 |
+
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
|
48 |
+
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
|
49 |
+
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
50 |
+
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
|
51 |
+
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
|
52 |
+
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
|
53 |
+
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
|
54 |
+
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
55 |
+
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
|
56 |
+
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
|
57 |
+
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
|
58 |
+
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
|
59 |
+
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
60 |
+
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
|
61 |
+
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
|
62 |
+
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
|
63 |
+
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
|
64 |
+
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
65 |
+
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
|
66 |
+
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
|
67 |
+
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
|
68 |
+
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
|
69 |
+
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
70 |
+
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
|
71 |
+
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
|
72 |
+
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
|
73 |
+
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
|
74 |
+
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
75 |
+
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
|
76 |
+
[102, 255, 0], [92, 0, 255]]
|
77 |
+
|
78 |
+
>>> image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
79 |
+
>>> image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
|
80 |
+
|
81 |
+
>>> controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-seg", torch_dtype=torch.float16)
|
82 |
+
|
83 |
+
>>> pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
84 |
+
"runwayml/stable-diffusion-inpainting", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
|
85 |
+
)
|
86 |
+
|
87 |
+
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
88 |
+
>>> pipe.enable_xformers_memory_efficient_attention()
|
89 |
+
>>> pipe.enable_model_cpu_offload()
|
90 |
+
|
91 |
+
>>> def image_to_seg(image):
|
92 |
+
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
93 |
+
with torch.no_grad():
|
94 |
+
outputs = image_segmentor(pixel_values)
|
95 |
+
seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
96 |
+
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
|
97 |
+
palette = np.array(ade_palette())
|
98 |
+
for label, color in enumerate(palette):
|
99 |
+
color_seg[seg == label, :] = color
|
100 |
+
color_seg = color_seg.astype(np.uint8)
|
101 |
+
seg_image = Image.fromarray(color_seg)
|
102 |
+
return seg_image
|
103 |
+
|
104 |
+
>>> image = load_image(
|
105 |
+
"https://github.com/CompVis/latent-diffusion/raw/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
106 |
+
)
|
107 |
+
|
108 |
+
>>> mask_image = load_image(
|
109 |
+
"https://github.com/CompVis/latent-diffusion/raw/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
110 |
+
)
|
111 |
+
|
112 |
+
>>> controlnet_conditioning_image = image_to_seg(image)
|
113 |
+
|
114 |
+
>>> image = pipe(
|
115 |
+
"Face of a yellow cat, high resolution, sitting on a park bench",
|
116 |
+
image,
|
117 |
+
mask_image,
|
118 |
+
controlnet_conditioning_image,
|
119 |
+
num_inference_steps=20,
|
120 |
+
).images[0]
|
121 |
+
|
122 |
+
>>> image.save("out.png")
|
123 |
+
```
|
124 |
+
"""
|
125 |
+
|
126 |
+
|
127 |
+
def prepare_image(image):
|
128 |
+
if isinstance(image, torch.Tensor):
|
129 |
+
# Batch single image
|
130 |
+
if image.ndim == 3:
|
131 |
+
image = image.unsqueeze(0)
|
132 |
+
|
133 |
+
image = image.to(dtype=torch.float32)
|
134 |
+
else:
|
135 |
+
# preprocess image
|
136 |
+
if isinstance(image, (PIL.Image.Image, np.ndarray)):
|
137 |
+
image = [image]
|
138 |
+
|
139 |
+
if isinstance(image, list) and isinstance(image[0], PIL.Image.Image):
|
140 |
+
image = [np.array(i.convert("RGB"))[None, :] for i in image]
|
141 |
+
image = np.concatenate(image, axis=0)
|
142 |
+
elif isinstance(image, list) and isinstance(image[0], np.ndarray):
|
143 |
+
image = np.concatenate([i[None, :] for i in image], axis=0)
|
144 |
+
|
145 |
+
image = image.transpose(0, 3, 1, 2)
|
146 |
+
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0
|
147 |
+
|
148 |
+
return image
|
149 |
+
|
150 |
+
|
151 |
+
def prepare_mask_image(mask_image):
|
152 |
+
if isinstance(mask_image, torch.Tensor):
|
153 |
+
if mask_image.ndim == 2:
|
154 |
+
# Batch and add channel dim for single mask
|
155 |
+
mask_image = mask_image.unsqueeze(0).unsqueeze(0)
|
156 |
+
elif mask_image.ndim == 3 and mask_image.shape[0] == 1:
|
157 |
+
# Single mask, the 0'th dimension is considered to be
|
158 |
+
# the existing batch size of 1
|
159 |
+
mask_image = mask_image.unsqueeze(0)
|
160 |
+
elif mask_image.ndim == 3 and mask_image.shape[0] != 1:
|
161 |
+
# Batch of mask, the 0'th dimension is considered to be
|
162 |
+
# the batching dimension
|
163 |
+
mask_image = mask_image.unsqueeze(1)
|
164 |
+
|
165 |
+
# Binarize mask
|
166 |
+
mask_image[mask_image < 0.5] = 0
|
167 |
+
mask_image[mask_image >= 0.5] = 1
|
168 |
+
else:
|
169 |
+
# preprocess mask
|
170 |
+
if isinstance(mask_image, (PIL.Image.Image, np.ndarray)):
|
171 |
+
mask_image = [mask_image]
|
172 |
+
|
173 |
+
if isinstance(mask_image, list) and isinstance(mask_image[0], PIL.Image.Image):
|
174 |
+
mask_image = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask_image], axis=0)
|
175 |
+
mask_image = mask_image.astype(np.float32) / 255.0
|
176 |
+
elif isinstance(mask_image, list) and isinstance(mask_image[0], np.ndarray):
|
177 |
+
mask_image = np.concatenate([m[None, None, :] for m in mask_image], axis=0)
|
178 |
+
|
179 |
+
mask_image[mask_image < 0.5] = 0
|
180 |
+
mask_image[mask_image >= 0.5] = 1
|
181 |
+
mask_image = torch.from_numpy(mask_image)
|
182 |
+
|
183 |
+
return mask_image
|
184 |
+
|
185 |
+
|
186 |
+
def prepare_controlnet_conditioning_image(
|
187 |
+
controlnet_conditioning_image, width, height, batch_size, num_images_per_prompt, device, dtype
|
188 |
+
):
|
189 |
+
if not isinstance(controlnet_conditioning_image, torch.Tensor):
|
190 |
+
if isinstance(controlnet_conditioning_image, PIL.Image.Image):
|
191 |
+
controlnet_conditioning_image = [controlnet_conditioning_image]
|
192 |
+
|
193 |
+
if isinstance(controlnet_conditioning_image[0], PIL.Image.Image):
|
194 |
+
controlnet_conditioning_image = [
|
195 |
+
np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]))[None, :]
|
196 |
+
for i in controlnet_conditioning_image
|
197 |
+
]
|
198 |
+
controlnet_conditioning_image = np.concatenate(controlnet_conditioning_image, axis=0)
|
199 |
+
controlnet_conditioning_image = np.array(controlnet_conditioning_image).astype(np.float32) / 255.0
|
200 |
+
controlnet_conditioning_image = controlnet_conditioning_image.transpose(0, 3, 1, 2)
|
201 |
+
controlnet_conditioning_image = torch.from_numpy(controlnet_conditioning_image)
|
202 |
+
elif isinstance(controlnet_conditioning_image[0], torch.Tensor):
|
203 |
+
controlnet_conditioning_image = torch.cat(controlnet_conditioning_image, dim=0)
|
204 |
+
|
205 |
+
image_batch_size = controlnet_conditioning_image.shape[0]
|
206 |
+
|
207 |
+
if image_batch_size == 1:
|
208 |
+
repeat_by = batch_size
|
209 |
+
else:
|
210 |
+
# image batch size is the same as prompt batch size
|
211 |
+
repeat_by = num_images_per_prompt
|
212 |
+
|
213 |
+
controlnet_conditioning_image = controlnet_conditioning_image.repeat_interleave(repeat_by, dim=0)
|
214 |
+
|
215 |
+
controlnet_conditioning_image = controlnet_conditioning_image.to(device=device, dtype=dtype)
|
216 |
+
|
217 |
+
return controlnet_conditioning_image
|
218 |
+
|
219 |
+
|
220 |
+
class StableDiffusionControlNetInpaintPipeline(DiffusionPipeline):
|
221 |
+
"""
|
222 |
+
Inspired by: https://github.com/haofanwang/ControlNet-for-Diffusers/
|
223 |
+
"""
|
224 |
+
|
225 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
226 |
+
|
227 |
+
def __init__(
|
228 |
+
self,
|
229 |
+
vae: AutoencoderKL,
|
230 |
+
text_encoder: CLIPTextModel,
|
231 |
+
tokenizer: CLIPTokenizer,
|
232 |
+
unet: UNet2DConditionModel,
|
233 |
+
controlnet: ControlNetModel,
|
234 |
+
scheduler: KarrasDiffusionSchedulers,
|
235 |
+
safety_checker: StableDiffusionSafetyChecker,
|
236 |
+
feature_extractor: CLIPImageProcessor,
|
237 |
+
requires_safety_checker: bool = True,
|
238 |
+
):
|
239 |
+
super().__init__()
|
240 |
+
|
241 |
+
if safety_checker is None and requires_safety_checker:
|
242 |
+
logger.warning(
|
243 |
+
f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
|
244 |
+
" that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
|
245 |
+
" results in services or applications open to the public. Both the diffusers team and Hugging Face"
|
246 |
+
" strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
|
247 |
+
" it only for use-cases that involve analyzing network behavior or auditing its results. For more"
|
248 |
+
" information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
|
249 |
+
)
|
250 |
+
|
251 |
+
if safety_checker is not None and feature_extractor is None:
|
252 |
+
raise ValueError(
|
253 |
+
"Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
|
254 |
+
" checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
|
255 |
+
)
|
256 |
+
|
257 |
+
self.register_modules(
|
258 |
+
vae=vae,
|
259 |
+
text_encoder=text_encoder,
|
260 |
+
tokenizer=tokenizer,
|
261 |
+
unet=unet,
|
262 |
+
controlnet=controlnet,
|
263 |
+
scheduler=scheduler,
|
264 |
+
safety_checker=safety_checker,
|
265 |
+
feature_extractor=feature_extractor,
|
266 |
+
)
|
267 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
268 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
269 |
+
|
270 |
+
def enable_vae_slicing(self):
|
271 |
+
r"""
|
272 |
+
Enable sliced VAE decoding.
|
273 |
+
|
274 |
+
When this option is enabled, the VAE will split the input tensor in slices to compute decoding in several
|
275 |
+
steps. This is useful to save some memory and allow larger batch sizes.
|
276 |
+
"""
|
277 |
+
self.vae.enable_slicing()
|
278 |
+
|
279 |
+
def disable_vae_slicing(self):
|
280 |
+
r"""
|
281 |
+
Disable sliced VAE decoding. If `enable_vae_slicing` was previously invoked, this method will go back to
|
282 |
+
computing decoding in one step.
|
283 |
+
"""
|
284 |
+
self.vae.disable_slicing()
|
285 |
+
|
286 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
287 |
+
r"""
|
288 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
289 |
+
text_encoder, vae, controlnet, and safety checker have their state dicts saved to CPU and then are moved to a
|
290 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
291 |
+
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
292 |
+
`enable_model_cpu_offload`, but performance is lower.
|
293 |
+
"""
|
294 |
+
if is_accelerate_available():
|
295 |
+
from accelerate import cpu_offload
|
296 |
+
else:
|
297 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
298 |
+
|
299 |
+
device = torch.device(f"cuda:{gpu_id}")
|
300 |
+
|
301 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.controlnet]:
|
302 |
+
cpu_offload(cpu_offloaded_model, device)
|
303 |
+
|
304 |
+
if self.safety_checker is not None:
|
305 |
+
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
|
306 |
+
|
307 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
308 |
+
r"""
|
309 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
310 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
311 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
312 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
313 |
+
"""
|
314 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
315 |
+
from accelerate import cpu_offload_with_hook
|
316 |
+
else:
|
317 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
318 |
+
|
319 |
+
device = torch.device(f"cuda:{gpu_id}")
|
320 |
+
|
321 |
+
hook = None
|
322 |
+
for cpu_offloaded_model in [self.text_encoder, self.unet, self.vae]:
|
323 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
324 |
+
|
325 |
+
if self.safety_checker is not None:
|
326 |
+
# the safety checker can offload the vae again
|
327 |
+
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
|
328 |
+
|
329 |
+
# control net hook has be manually offloaded as it alternates with unet
|
330 |
+
cpu_offload_with_hook(self.controlnet, device)
|
331 |
+
|
332 |
+
# We'll offload the last model manually.
|
333 |
+
self.final_offload_hook = hook
|
334 |
+
|
335 |
+
@property
|
336 |
+
def _execution_device(self):
|
337 |
+
r"""
|
338 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
339 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
340 |
+
hooks.
|
341 |
+
"""
|
342 |
+
if not hasattr(self.unet, "_hf_hook"):
|
343 |
+
return self.device
|
344 |
+
for module in self.unet.modules():
|
345 |
+
if (
|
346 |
+
hasattr(module, "_hf_hook")
|
347 |
+
and hasattr(module._hf_hook, "execution_device")
|
348 |
+
and module._hf_hook.execution_device is not None
|
349 |
+
):
|
350 |
+
return torch.device(module._hf_hook.execution_device)
|
351 |
+
return self.device
|
352 |
+
|
353 |
+
def _encode_prompt(
|
354 |
+
self,
|
355 |
+
prompt,
|
356 |
+
device,
|
357 |
+
num_images_per_prompt,
|
358 |
+
do_classifier_free_guidance,
|
359 |
+
negative_prompt=None,
|
360 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
361 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
362 |
+
):
|
363 |
+
r"""
|
364 |
+
Encodes the prompt into text encoder hidden states.
|
365 |
+
|
366 |
+
Args:
|
367 |
+
prompt (`str` or `List[str]`, *optional*):
|
368 |
+
prompt to be encoded
|
369 |
+
device: (`torch.device`):
|
370 |
+
torch device
|
371 |
+
num_images_per_prompt (`int`):
|
372 |
+
number of images that should be generated per prompt
|
373 |
+
do_classifier_free_guidance (`bool`):
|
374 |
+
whether to use classifier free guidance or not
|
375 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
376 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead.
|
377 |
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
378 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
379 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
380 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
381 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
382 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
383 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
384 |
+
argument.
|
385 |
+
"""
|
386 |
+
if prompt is not None and isinstance(prompt, str):
|
387 |
+
batch_size = 1
|
388 |
+
elif prompt is not None and isinstance(prompt, list):
|
389 |
+
batch_size = len(prompt)
|
390 |
+
else:
|
391 |
+
batch_size = prompt_embeds.shape[0]
|
392 |
+
|
393 |
+
if prompt_embeds is None:
|
394 |
+
text_inputs = self.tokenizer(
|
395 |
+
prompt,
|
396 |
+
padding="max_length",
|
397 |
+
max_length=self.tokenizer.model_max_length,
|
398 |
+
truncation=True,
|
399 |
+
return_tensors="pt",
|
400 |
+
)
|
401 |
+
text_input_ids = text_inputs.input_ids
|
402 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
403 |
+
|
404 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
405 |
+
text_input_ids, untruncated_ids
|
406 |
+
):
|
407 |
+
removed_text = self.tokenizer.batch_decode(
|
408 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
409 |
+
)
|
410 |
+
logger.warning(
|
411 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
412 |
+
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
413 |
+
)
|
414 |
+
|
415 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
416 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
417 |
+
else:
|
418 |
+
attention_mask = None
|
419 |
+
|
420 |
+
prompt_embeds = self.text_encoder(
|
421 |
+
text_input_ids.to(device),
|
422 |
+
attention_mask=attention_mask,
|
423 |
+
)
|
424 |
+
prompt_embeds = prompt_embeds[0]
|
425 |
+
|
426 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
427 |
+
|
428 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
429 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
430 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
431 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
432 |
+
|
433 |
+
# get unconditional embeddings for classifier free guidance
|
434 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
435 |
+
uncond_tokens: List[str]
|
436 |
+
if negative_prompt is None:
|
437 |
+
uncond_tokens = [""] * batch_size
|
438 |
+
elif type(prompt) is not type(negative_prompt):
|
439 |
+
raise TypeError(
|
440 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
441 |
+
f" {type(prompt)}."
|
442 |
+
)
|
443 |
+
elif isinstance(negative_prompt, str):
|
444 |
+
uncond_tokens = [negative_prompt]
|
445 |
+
elif batch_size != len(negative_prompt):
|
446 |
+
raise ValueError(
|
447 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
448 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
449 |
+
" the batch size of `prompt`."
|
450 |
+
)
|
451 |
+
else:
|
452 |
+
uncond_tokens = negative_prompt
|
453 |
+
|
454 |
+
max_length = prompt_embeds.shape[1]
|
455 |
+
uncond_input = self.tokenizer(
|
456 |
+
uncond_tokens,
|
457 |
+
padding="max_length",
|
458 |
+
max_length=max_length,
|
459 |
+
truncation=True,
|
460 |
+
return_tensors="pt",
|
461 |
+
)
|
462 |
+
|
463 |
+
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
464 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
465 |
+
else:
|
466 |
+
attention_mask = None
|
467 |
+
|
468 |
+
negative_prompt_embeds = self.text_encoder(
|
469 |
+
uncond_input.input_ids.to(device),
|
470 |
+
attention_mask=attention_mask,
|
471 |
+
)
|
472 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
473 |
+
|
474 |
+
if do_classifier_free_guidance:
|
475 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
476 |
+
seq_len = negative_prompt_embeds.shape[1]
|
477 |
+
|
478 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
479 |
+
|
480 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
481 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
482 |
+
|
483 |
+
# For classifier free guidance, we need to do two forward passes.
|
484 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
485 |
+
# to avoid doing two forward passes
|
486 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
487 |
+
|
488 |
+
return prompt_embeds
|
489 |
+
|
490 |
+
def run_safety_checker(self, image, device, dtype):
|
491 |
+
if self.safety_checker is not None:
|
492 |
+
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
|
493 |
+
image, has_nsfw_concept = self.safety_checker(
|
494 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
495 |
+
)
|
496 |
+
else:
|
497 |
+
has_nsfw_concept = None
|
498 |
+
return image, has_nsfw_concept
|
499 |
+
|
500 |
+
def decode_latents(self, latents):
|
501 |
+
latents = 1 / self.vae.config.scaling_factor * latents
|
502 |
+
image = self.vae.decode(latents).sample
|
503 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
504 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
505 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
506 |
+
return image
|
507 |
+
|
508 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
509 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
510 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
511 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
512 |
+
# and should be between [0, 1]
|
513 |
+
|
514 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
515 |
+
extra_step_kwargs = {}
|
516 |
+
if accepts_eta:
|
517 |
+
extra_step_kwargs["eta"] = eta
|
518 |
+
|
519 |
+
# check if the scheduler accepts generator
|
520 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
521 |
+
if accepts_generator:
|
522 |
+
extra_step_kwargs["generator"] = generator
|
523 |
+
return extra_step_kwargs
|
524 |
+
|
525 |
+
def check_inputs(
|
526 |
+
self,
|
527 |
+
prompt,
|
528 |
+
image,
|
529 |
+
mask_image,
|
530 |
+
controlnet_conditioning_image,
|
531 |
+
height,
|
532 |
+
width,
|
533 |
+
callback_steps,
|
534 |
+
negative_prompt=None,
|
535 |
+
prompt_embeds=None,
|
536 |
+
negative_prompt_embeds=None,
|
537 |
+
):
|
538 |
+
if height % 8 != 0 or width % 8 != 0:
|
539 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
540 |
+
|
541 |
+
if (callback_steps is None) or (
|
542 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
543 |
+
):
|
544 |
+
raise ValueError(
|
545 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
546 |
+
f" {type(callback_steps)}."
|
547 |
+
)
|
548 |
+
|
549 |
+
if prompt is not None and prompt_embeds is not None:
|
550 |
+
raise ValueError(
|
551 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
552 |
+
" only forward one of the two."
|
553 |
+
)
|
554 |
+
elif prompt is None and prompt_embeds is None:
|
555 |
+
raise ValueError(
|
556 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
557 |
+
)
|
558 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
559 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
560 |
+
|
561 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
562 |
+
raise ValueError(
|
563 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
564 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
565 |
+
)
|
566 |
+
|
567 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
568 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
569 |
+
raise ValueError(
|
570 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
571 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
572 |
+
f" {negative_prompt_embeds.shape}."
|
573 |
+
)
|
574 |
+
|
575 |
+
controlnet_cond_image_is_pil = isinstance(controlnet_conditioning_image, PIL.Image.Image)
|
576 |
+
controlnet_cond_image_is_tensor = isinstance(controlnet_conditioning_image, torch.Tensor)
|
577 |
+
controlnet_cond_image_is_pil_list = isinstance(controlnet_conditioning_image, list) and isinstance(
|
578 |
+
controlnet_conditioning_image[0], PIL.Image.Image
|
579 |
+
)
|
580 |
+
controlnet_cond_image_is_tensor_list = isinstance(controlnet_conditioning_image, list) and isinstance(
|
581 |
+
controlnet_conditioning_image[0], torch.Tensor
|
582 |
+
)
|
583 |
+
|
584 |
+
if (
|
585 |
+
not controlnet_cond_image_is_pil
|
586 |
+
and not controlnet_cond_image_is_tensor
|
587 |
+
and not controlnet_cond_image_is_pil_list
|
588 |
+
and not controlnet_cond_image_is_tensor_list
|
589 |
+
):
|
590 |
+
raise TypeError(
|
591 |
+
"image must be passed and be one of PIL image, torch tensor, list of PIL images, or list of torch tensors"
|
592 |
+
)
|
593 |
+
|
594 |
+
if controlnet_cond_image_is_pil:
|
595 |
+
controlnet_cond_image_batch_size = 1
|
596 |
+
elif controlnet_cond_image_is_tensor:
|
597 |
+
controlnet_cond_image_batch_size = controlnet_conditioning_image.shape[0]
|
598 |
+
elif controlnet_cond_image_is_pil_list:
|
599 |
+
controlnet_cond_image_batch_size = len(controlnet_conditioning_image)
|
600 |
+
elif controlnet_cond_image_is_tensor_list:
|
601 |
+
controlnet_cond_image_batch_size = len(controlnet_conditioning_image)
|
602 |
+
|
603 |
+
if prompt is not None and isinstance(prompt, str):
|
604 |
+
prompt_batch_size = 1
|
605 |
+
elif prompt is not None and isinstance(prompt, list):
|
606 |
+
prompt_batch_size = len(prompt)
|
607 |
+
elif prompt_embeds is not None:
|
608 |
+
prompt_batch_size = prompt_embeds.shape[0]
|
609 |
+
|
610 |
+
if controlnet_cond_image_batch_size != 1 and controlnet_cond_image_batch_size != prompt_batch_size:
|
611 |
+
raise ValueError(
|
612 |
+
f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {controlnet_cond_image_batch_size}, prompt batch size: {prompt_batch_size}"
|
613 |
+
)
|
614 |
+
|
615 |
+
if isinstance(image, torch.Tensor) and not isinstance(mask_image, torch.Tensor):
|
616 |
+
raise TypeError("if `image` is a tensor, `mask_image` must also be a tensor")
|
617 |
+
|
618 |
+
if isinstance(image, PIL.Image.Image) and not isinstance(mask_image, PIL.Image.Image):
|
619 |
+
raise TypeError("if `image` is a PIL image, `mask_image` must also be a PIL image")
|
620 |
+
|
621 |
+
if isinstance(image, torch.Tensor):
|
622 |
+
if image.ndim != 3 and image.ndim != 4:
|
623 |
+
raise ValueError("`image` must have 3 or 4 dimensions")
|
624 |
+
|
625 |
+
if mask_image.ndim != 2 and mask_image.ndim != 3 and mask_image.ndim != 4:
|
626 |
+
raise ValueError("`mask_image` must have 2, 3, or 4 dimensions")
|
627 |
+
|
628 |
+
if image.ndim == 3:
|
629 |
+
image_batch_size = 1
|
630 |
+
image_channels, image_height, image_width = image.shape
|
631 |
+
elif image.ndim == 4:
|
632 |
+
image_batch_size, image_channels, image_height, image_width = image.shape
|
633 |
+
|
634 |
+
if mask_image.ndim == 2:
|
635 |
+
mask_image_batch_size = 1
|
636 |
+
mask_image_channels = 1
|
637 |
+
mask_image_height, mask_image_width = mask_image.shape
|
638 |
+
elif mask_image.ndim == 3:
|
639 |
+
mask_image_channels = 1
|
640 |
+
mask_image_batch_size, mask_image_height, mask_image_width = mask_image.shape
|
641 |
+
elif mask_image.ndim == 4:
|
642 |
+
mask_image_batch_size, mask_image_channels, mask_image_height, mask_image_width = mask_image.shape
|
643 |
+
|
644 |
+
if image_channels != 3:
|
645 |
+
raise ValueError("`image` must have 3 channels")
|
646 |
+
|
647 |
+
if mask_image_channels != 1:
|
648 |
+
raise ValueError("`mask_image` must have 1 channel")
|
649 |
+
|
650 |
+
if image_batch_size != mask_image_batch_size:
|
651 |
+
raise ValueError("`image` and `mask_image` mush have the same batch sizes")
|
652 |
+
|
653 |
+
if image_height != mask_image_height or image_width != mask_image_width:
|
654 |
+
raise ValueError("`image` and `mask_image` must have the same height and width dimensions")
|
655 |
+
|
656 |
+
if image.min() < -1 or image.max() > 1:
|
657 |
+
raise ValueError("`image` should be in range [-1, 1]")
|
658 |
+
|
659 |
+
if mask_image.min() < 0 or mask_image.max() > 1:
|
660 |
+
raise ValueError("`mask_image` should be in range [0, 1]")
|
661 |
+
else:
|
662 |
+
mask_image_channels = 1
|
663 |
+
image_channels = 3
|
664 |
+
|
665 |
+
single_image_latent_channels = self.vae.config.latent_channels
|
666 |
+
|
667 |
+
total_latent_channels = single_image_latent_channels * 2 + mask_image_channels
|
668 |
+
|
669 |
+
if total_latent_channels != self.unet.config.in_channels:
|
670 |
+
raise ValueError(
|
671 |
+
f"The config of `pipeline.unet` expects {self.unet.config.in_channels} but received"
|
672 |
+
f" non inpainting latent channels: {single_image_latent_channels},"
|
673 |
+
f" mask channels: {mask_image_channels}, and masked image channels: {single_image_latent_channels}."
|
674 |
+
f" Please verify the config of `pipeline.unet` and the `mask_image` and `image` inputs."
|
675 |
+
)
|
676 |
+
|
677 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
678 |
+
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
|
679 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
680 |
+
raise ValueError(
|
681 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
682 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
683 |
+
)
|
684 |
+
|
685 |
+
if latents is None:
|
686 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
687 |
+
else:
|
688 |
+
latents = latents.to(device)
|
689 |
+
|
690 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
691 |
+
latents = latents * self.scheduler.init_noise_sigma
|
692 |
+
|
693 |
+
return latents
|
694 |
+
|
695 |
+
def prepare_mask_latents(self, mask_image, batch_size, height, width, dtype, device, do_classifier_free_guidance):
|
696 |
+
# resize the mask to latents shape as we concatenate the mask to the latents
|
697 |
+
# we do that before converting to dtype to avoid breaking in case we're using cpu_offload
|
698 |
+
# and half precision
|
699 |
+
mask_image = F.interpolate(mask_image, size=(height // self.vae_scale_factor, width // self.vae_scale_factor))
|
700 |
+
mask_image = mask_image.to(device=device, dtype=dtype)
|
701 |
+
|
702 |
+
# duplicate mask for each generation per prompt, using mps friendly method
|
703 |
+
if mask_image.shape[0] < batch_size:
|
704 |
+
if not batch_size % mask_image.shape[0] == 0:
|
705 |
+
raise ValueError(
|
706 |
+
"The passed mask and the required batch size don't match. Masks are supposed to be duplicated to"
|
707 |
+
f" a total batch size of {batch_size}, but {mask_image.shape[0]} masks were passed. Make sure the number"
|
708 |
+
" of masks that you pass is divisible by the total requested batch size."
|
709 |
+
)
|
710 |
+
mask_image = mask_image.repeat(batch_size // mask_image.shape[0], 1, 1, 1)
|
711 |
+
|
712 |
+
mask_image = torch.cat([mask_image] * 2) if do_classifier_free_guidance else mask_image
|
713 |
+
|
714 |
+
mask_image_latents = mask_image
|
715 |
+
|
716 |
+
return mask_image_latents
|
717 |
+
|
718 |
+
def prepare_masked_image_latents(
|
719 |
+
self, masked_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
|
720 |
+
):
|
721 |
+
masked_image = masked_image.to(device=device, dtype=dtype)
|
722 |
+
|
723 |
+
# encode the mask image into latents space so we can concatenate it to the latents
|
724 |
+
if isinstance(generator, list):
|
725 |
+
masked_image_latents = [
|
726 |
+
self.vae.encode(masked_image[i : i + 1]).latent_dist.sample(generator=generator[i])
|
727 |
+
for i in range(batch_size)
|
728 |
+
]
|
729 |
+
masked_image_latents = torch.cat(masked_image_latents, dim=0)
|
730 |
+
else:
|
731 |
+
masked_image_latents = self.vae.encode(masked_image).latent_dist.sample(generator=generator)
|
732 |
+
masked_image_latents = self.vae.config.scaling_factor * masked_image_latents
|
733 |
+
|
734 |
+
# duplicate masked_image_latents for each generation per prompt, using mps friendly method
|
735 |
+
if masked_image_latents.shape[0] < batch_size:
|
736 |
+
if not batch_size % masked_image_latents.shape[0] == 0:
|
737 |
+
raise ValueError(
|
738 |
+
"The passed images and the required batch size don't match. Images are supposed to be duplicated"
|
739 |
+
f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed."
|
740 |
+
" Make sure the number of images that you pass is divisible by the total requested batch size."
|
741 |
+
)
|
742 |
+
masked_image_latents = masked_image_latents.repeat(batch_size // masked_image_latents.shape[0], 1, 1, 1)
|
743 |
+
|
744 |
+
masked_image_latents = (
|
745 |
+
torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents
|
746 |
+
)
|
747 |
+
|
748 |
+
# aligning device to prevent device errors when concating it with the latent model input
|
749 |
+
masked_image_latents = masked_image_latents.to(device=device, dtype=dtype)
|
750 |
+
return masked_image_latents
|
751 |
+
|
752 |
+
def _default_height_width(self, height, width, image):
|
753 |
+
if isinstance(image, list):
|
754 |
+
image = image[0]
|
755 |
+
|
756 |
+
if height is None:
|
757 |
+
if isinstance(image, PIL.Image.Image):
|
758 |
+
height = image.height
|
759 |
+
elif isinstance(image, torch.Tensor):
|
760 |
+
height = image.shape[3]
|
761 |
+
|
762 |
+
height = (height // 8) * 8 # round down to nearest multiple of 8
|
763 |
+
|
764 |
+
if width is None:
|
765 |
+
if isinstance(image, PIL.Image.Image):
|
766 |
+
width = image.width
|
767 |
+
elif isinstance(image, torch.Tensor):
|
768 |
+
width = image.shape[2]
|
769 |
+
|
770 |
+
width = (width // 8) * 8 # round down to nearest multiple of 8
|
771 |
+
|
772 |
+
return height, width
|
773 |
+
|
774 |
+
@torch.no_grad()
|
775 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
776 |
+
def __call__(
|
777 |
+
self,
|
778 |
+
prompt: Union[str, List[str]] = None,
|
779 |
+
image: Union[torch.Tensor, PIL.Image.Image] = None,
|
780 |
+
mask_image: Union[torch.Tensor, PIL.Image.Image] = None,
|
781 |
+
controlnet_conditioning_image: Union[
|
782 |
+
torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]
|
783 |
+
] = None,
|
784 |
+
height: Optional[int] = None,
|
785 |
+
width: Optional[int] = None,
|
786 |
+
num_inference_steps: int = 50,
|
787 |
+
guidance_scale: float = 7.5,
|
788 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
789 |
+
num_images_per_prompt: Optional[int] = 1,
|
790 |
+
eta: float = 0.0,
|
791 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
792 |
+
latents: Optional[torch.FloatTensor] = None,
|
793 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
794 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
795 |
+
output_type: Optional[str] = "pil",
|
796 |
+
return_dict: bool = True,
|
797 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
798 |
+
callback_steps: int = 1,
|
799 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
800 |
+
controlnet_conditioning_scale: float = 1.0,
|
801 |
+
):
|
802 |
+
r"""
|
803 |
+
Function invoked when calling the pipeline for generation.
|
804 |
+
|
805 |
+
Args:
|
806 |
+
prompt (`str` or `List[str]`, *optional*):
|
807 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
808 |
+
instead.
|
809 |
+
image (`torch.Tensor` or `PIL.Image.Image`):
|
810 |
+
`Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will
|
811 |
+
be masked out with `mask_image` and repainted according to `prompt`.
|
812 |
+
mask_image (`torch.Tensor` or `PIL.Image.Image`):
|
813 |
+
`Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
|
814 |
+
repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted
|
815 |
+
to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L)
|
816 |
+
instead of 3, so the expected shape would be `(B, H, W, 1)`.
|
817 |
+
controlnet_conditioning_image (`torch.FloatTensor`, `PIL.Image.Image`, `List[torch.FloatTensor]` or `List[PIL.Image.Image]`):
|
818 |
+
The ControlNet input condition. ControlNet uses this input condition to generate guidance to Unet. If
|
819 |
+
the type is specified as `Torch.FloatTensor`, it is passed to ControlNet as is. PIL.Image.Image` can
|
820 |
+
also be accepted as an image. The control image is automatically resized to fit the output image.
|
821 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
822 |
+
The height in pixels of the generated image.
|
823 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
824 |
+
The width in pixels of the generated image.
|
825 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
826 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
827 |
+
expense of slower inference.
|
828 |
+
guidance_scale (`float`, *optional*, defaults to 7.5):
|
829 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
830 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
831 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
832 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
833 |
+
usually at the expense of lower image quality.
|
834 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
835 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead.
|
836 |
+
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
837 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
838 |
+
The number of images to generate per prompt.
|
839 |
+
eta (`float`, *optional*, defaults to 0.0):
|
840 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
841 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
842 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
843 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
844 |
+
to make generation deterministic.
|
845 |
+
latents (`torch.FloatTensor`, *optional*):
|
846 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
847 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
848 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
849 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
850 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
851 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
852 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
853 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
854 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
855 |
+
argument.
|
856 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
857 |
+
The output format of the generate image. Choose between
|
858 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
859 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
860 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
861 |
+
plain tuple.
|
862 |
+
callback (`Callable`, *optional*):
|
863 |
+
A function that will be called every `callback_steps` steps during inference. The function will be
|
864 |
+
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
865 |
+
callback_steps (`int`, *optional*, defaults to 1):
|
866 |
+
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
867 |
+
called at every step.
|
868 |
+
cross_attention_kwargs (`dict`, *optional*):
|
869 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
870 |
+
`self.processor` in
|
871 |
+
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py).
|
872 |
+
controlnet_conditioning_scale (`float`, *optional*, defaults to 1.0):
|
873 |
+
The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added
|
874 |
+
to the residual in the original unet.
|
875 |
+
|
876 |
+
Examples:
|
877 |
+
|
878 |
+
Returns:
|
879 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
880 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
881 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
882 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
883 |
+
(nsfw) content, according to the `safety_checker`.
|
884 |
+
"""
|
885 |
+
# 0. Default height and width to unet
|
886 |
+
height, width = self._default_height_width(height, width, controlnet_conditioning_image)
|
887 |
+
|
888 |
+
# 1. Check inputs. Raise error if not correct
|
889 |
+
self.check_inputs(
|
890 |
+
prompt,
|
891 |
+
image,
|
892 |
+
mask_image,
|
893 |
+
controlnet_conditioning_image,
|
894 |
+
height,
|
895 |
+
width,
|
896 |
+
callback_steps,
|
897 |
+
negative_prompt,
|
898 |
+
prompt_embeds,
|
899 |
+
negative_prompt_embeds,
|
900 |
+
)
|
901 |
+
|
902 |
+
# 2. Define call parameters
|
903 |
+
if prompt is not None and isinstance(prompt, str):
|
904 |
+
batch_size = 1
|
905 |
+
elif prompt is not None and isinstance(prompt, list):
|
906 |
+
batch_size = len(prompt)
|
907 |
+
else:
|
908 |
+
batch_size = prompt_embeds.shape[0]
|
909 |
+
|
910 |
+
device = self._execution_device
|
911 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
912 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
913 |
+
# corresponds to doing no classifier free guidance.
|
914 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
915 |
+
|
916 |
+
# 3. Encode input prompt
|
917 |
+
prompt_embeds = self._encode_prompt(
|
918 |
+
prompt,
|
919 |
+
device,
|
920 |
+
num_images_per_prompt,
|
921 |
+
do_classifier_free_guidance,
|
922 |
+
negative_prompt,
|
923 |
+
prompt_embeds=prompt_embeds,
|
924 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
925 |
+
)
|
926 |
+
|
927 |
+
# 4. Prepare mask, image, and controlnet_conditioning_image
|
928 |
+
image = prepare_image(image)
|
929 |
+
|
930 |
+
mask_image = prepare_mask_image(mask_image)
|
931 |
+
|
932 |
+
controlnet_conditioning_image = prepare_controlnet_conditioning_image(
|
933 |
+
controlnet_conditioning_image,
|
934 |
+
width,
|
935 |
+
height,
|
936 |
+
batch_size * num_images_per_prompt,
|
937 |
+
num_images_per_prompt,
|
938 |
+
device,
|
939 |
+
self.controlnet.dtype,
|
940 |
+
)
|
941 |
+
|
942 |
+
masked_image = image * (mask_image < 0.5)
|
943 |
+
|
944 |
+
# 5. Prepare timesteps
|
945 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
946 |
+
timesteps = self.scheduler.timesteps
|
947 |
+
|
948 |
+
# 6. Prepare latent variables
|
949 |
+
num_channels_latents = self.vae.config.latent_channels
|
950 |
+
latents = self.prepare_latents(
|
951 |
+
batch_size * num_images_per_prompt,
|
952 |
+
num_channels_latents,
|
953 |
+
height,
|
954 |
+
width,
|
955 |
+
prompt_embeds.dtype,
|
956 |
+
device,
|
957 |
+
generator,
|
958 |
+
latents,
|
959 |
+
)
|
960 |
+
|
961 |
+
mask_image_latents = self.prepare_mask_latents(
|
962 |
+
mask_image,
|
963 |
+
batch_size * num_images_per_prompt,
|
964 |
+
height,
|
965 |
+
width,
|
966 |
+
prompt_embeds.dtype,
|
967 |
+
device,
|
968 |
+
do_classifier_free_guidance,
|
969 |
+
)
|
970 |
+
|
971 |
+
masked_image_latents = self.prepare_masked_image_latents(
|
972 |
+
masked_image,
|
973 |
+
batch_size * num_images_per_prompt,
|
974 |
+
height,
|
975 |
+
width,
|
976 |
+
prompt_embeds.dtype,
|
977 |
+
device,
|
978 |
+
generator,
|
979 |
+
do_classifier_free_guidance,
|
980 |
+
)
|
981 |
+
|
982 |
+
if do_classifier_free_guidance:
|
983 |
+
controlnet_conditioning_image = torch.cat([controlnet_conditioning_image] * 2)
|
984 |
+
|
985 |
+
# 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
986 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
987 |
+
|
988 |
+
# 8. Denoising loop
|
989 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
990 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
991 |
+
for i, t in enumerate(timesteps):
|
992 |
+
# expand the latents if we are doing classifier free guidance
|
993 |
+
non_inpainting_latent_model_input = (
|
994 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
995 |
+
)
|
996 |
+
|
997 |
+
non_inpainting_latent_model_input = self.scheduler.scale_model_input(
|
998 |
+
non_inpainting_latent_model_input, t
|
999 |
+
)
|
1000 |
+
|
1001 |
+
inpainting_latent_model_input = torch.cat(
|
1002 |
+
[non_inpainting_latent_model_input, mask_image_latents, masked_image_latents], dim=1
|
1003 |
+
)
|
1004 |
+
|
1005 |
+
down_block_res_samples, mid_block_res_sample = self.controlnet(
|
1006 |
+
non_inpainting_latent_model_input,
|
1007 |
+
t,
|
1008 |
+
encoder_hidden_states=prompt_embeds,
|
1009 |
+
controlnet_cond=controlnet_conditioning_image,
|
1010 |
+
return_dict=False,
|
1011 |
+
)
|
1012 |
+
|
1013 |
+
down_block_res_samples = [
|
1014 |
+
down_block_res_sample * controlnet_conditioning_scale
|
1015 |
+
for down_block_res_sample in down_block_res_samples
|
1016 |
+
]
|
1017 |
+
mid_block_res_sample *= controlnet_conditioning_scale
|
1018 |
+
|
1019 |
+
# predict the noise residual
|
1020 |
+
noise_pred = self.unet(
|
1021 |
+
inpainting_latent_model_input,
|
1022 |
+
t,
|
1023 |
+
encoder_hidden_states=prompt_embeds,
|
1024 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1025 |
+
down_block_additional_residuals=down_block_res_samples,
|
1026 |
+
mid_block_additional_residual=mid_block_res_sample,
|
1027 |
+
).sample
|
1028 |
+
|
1029 |
+
# perform guidance
|
1030 |
+
if do_classifier_free_guidance:
|
1031 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1032 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1033 |
+
|
1034 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1035 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
1036 |
+
|
1037 |
+
# call the callback, if provided
|
1038 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1039 |
+
progress_bar.update()
|
1040 |
+
if callback is not None and i % callback_steps == 0:
|
1041 |
+
callback(i, t, latents)
|
1042 |
+
|
1043 |
+
# If we do sequential model offloading, let's offload unet and controlnet
|
1044 |
+
# manually for max memory savings
|
1045 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1046 |
+
self.unet.to("cpu")
|
1047 |
+
self.controlnet.to("cpu")
|
1048 |
+
torch.cuda.empty_cache()
|
1049 |
+
|
1050 |
+
if output_type == "latent":
|
1051 |
+
image = latents
|
1052 |
+
has_nsfw_concept = None
|
1053 |
+
elif output_type == "pil":
|
1054 |
+
# 8. Post-processing
|
1055 |
+
image = self.decode_latents(latents)
|
1056 |
+
|
1057 |
+
# 9. Run safety checker
|
1058 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
1059 |
+
|
1060 |
+
# 10. Convert to PIL
|
1061 |
+
image = self.numpy_to_pil(image)
|
1062 |
+
else:
|
1063 |
+
# 8. Post-processing
|
1064 |
+
image = self.decode_latents(latents)
|
1065 |
+
|
1066 |
+
# 9. Run safety checker
|
1067 |
+
image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
1068 |
+
|
1069 |
+
# Offload last model to CPU
|
1070 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
1071 |
+
self.final_offload_hook.offload()
|
1072 |
+
|
1073 |
+
if not return_dict:
|
1074 |
+
return (image, has_nsfw_concept)
|
1075 |
+
|
1076 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|